This method produces an HTML string, mainly converting several simple text formatting environments, such as bold face, italics, etc. Rendering mathematical characters and equations is done by $\KaTeX$, a JavaScript math typesetting library for browsers. See the list of supported functions and symbols for more information, or this page for an introduction to math mode in $\LaTeX$.
Equations in $..$ or \(...\) appear in inline mode, such as $x^2-1$, while those in $$..$$ or \[...\] appear in display mode:$$\left(\begin{smallmatrix} x&z\\ y&w\\ \end{smallmatrix}\right).$$
In addition, {\bf ...}, {\em ...}, {\it ...}, {\tt ...}, and \url{...} are converted to Hypertext objects:
res(Module) is the method for making resolutions (see https://macaulay2.com).
Here are some examples designed to illustrate various other features of this function when viewed in a browser:
$\Gamma\Omega\pi$ | $\Gamma\Omega\pi$ |
$\partial\ell\infty$ | $\partial\ell\infty$ |
$\Re\Im\aleph\beth$ | $\Re\Im\aleph\beth$ |
$\NN\QQ\RR\CC\ZZ\PP$ | $\NN\QQ\RR\CC\ZZ\PP$ |
$\binom{n}{k}$ | $\binom{n}{k}$ |
$\sqrt[2]{\frac{a}{b}}$ | $\sqrt[2]{\frac{a}{b}}$ |
$\sum\prod\coprod$ | $\sum\prod\coprod$ |
$\bigoplus\bigotimes$ | $\bigoplus\bigotimes$ |
$\bigcup\bigcap$ | $\bigcup\bigcap$ |
$\bigvee\bigwedge$ | $\bigvee\bigwedge$ |
$\int\oint\iint\iiint$ | $\int\oint\iint\iiint$ |
$\oint\limits_{\partial M}$ | $\oint\limits_{\partial M}$ |
$\lim\limits_{x\to0}$ | $\lim\limits_{x\to0}$ |
$\min\limits_{x\to\infty}$ | $\min\limits_{x\to\infty}$ |
$\det\limits_{x\to0}$ | $\det\limits_{x\to0}$ |
$\Pr\limits_{x\in\RR}$ | $\Pr\limits_{x\in\RR}$ |
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ | $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ |
$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ | $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ |
$\mathnormal{...}$ | $\mathnormal{ABCD \; abcd \; 123}$ |
$\mathrm{...}$ | $\mathrm{ABCD \; abcd \; 123}$ |
$\mathit{...}$ | $\mathit{ABCD \; abcd \; 123}$ |
$\mathbf{...}$ | $\mathbf{ABCD \; abcd \; 123}$ |
$\mathsf{...}$ | $\mathsf{ABCD \; abcd \; 123}$ |
$\mathtt{...}$ | $\mathtt{ABCD \; abcd \; 123}$ |
$\mathfrak{...}$ | $\mathfrak{ABCD \; abcd \; 123}$ |
$\mathcal{...}$ | $\mathcal{ABCD \; abcd \; 123}$ |
$\mathbb{...}$ | $\mathbb{ABCD \; abcd \; 123}$ |
$\mathscr{...}$ | $\mathscr{ABCD \; abcd \; 123}$ |
$\underline{a}$ | $\underline{a}$ |
$\hat{a}$ | $\hat{a}$ |
$\widehat{a}$ | $\widehat{a}$ |
$\tilde{a}$ | $\tilde{a}$ |
$\widetilde{a}$ | $\widetilde{a}$ |
$\stackrel\frown{a}$ | $\stackrel\frown{a}$ |
$\check{a}$ | $\check{a}$ |
$\breve{a}$ | $\breve{a}$ |
$\bar{a}$ | $\bar{a}$ |
$\grave{a}$ | $\grave{a}$ |
$\acute{a}$ | $\acute{a}$ |
$\dot{a}$ | $\dot{a}$ |
$\ddot{a}$ | $\ddot{a}$ |
$\not{a}$ | $\not{a}$ |
$\mathring{a}$ | $\mathring{a}$ |
$\vec{a}$ | $\vec{a}$ |
$\overrightarrow{a}$ | $\overrightarrow{a}$ |
$\overleftarrow{a}$ | $\overleftarrow{a}$ |
$\overline{a}$ | $\overline{a}$ |
Lastly, new macros can be defined using script tags. For instance, inserting the following LITERAL item in the documentation defines the structure sheaf:
LITERAL ///<script type="text/javascript"> macros["\\OO"] = "\\mathcal{O}" </script>///
The macro can be used at any point after: $$ 0 \to 2\OO_{\PP^3}(-3) \to 3\OO_{\PP^3}(-2) \to \OO_{\PP^3} \to \OO_C \to 0 $$