i1 : E1 = toricVectorBundle(2,hirzebruchFan 3) o1 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o1 : ToricVectorBundleKlyachko |
i2 : E2 = tangentBundle hirzebruchFan 3 o2 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o2 : ToricVectorBundleKlyachko |
i3 : E = E1 ++ E2 o3 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 4 o3 : ToricVectorBundleKlyachko |
i4 : details E o4 = HashTable{| -1 | => (| 1 0 0 0 |, | 0 0 -1 0 |)} | 3 | | 0 1 0 0 | | 0 0 -1 1/3 | | 0 0 3 0 | | 0 | => (| 1 0 0 0 |, | 0 0 -1 0 |) | -1 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 -1 0 | | 0 | => (| 1 0 0 0 |, | 0 0 -1 0 |) | 1 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 1 0 | | 1 | => (| 1 0 0 0 |, | 0 0 -1 0 |) | 0 | | 0 1 0 0 | | 0 0 1 0 | | 0 0 0 1 | o4 : HashTable |
i5 : E1 = toricVectorBundle(2,hirzebruchFan 3,"Type" => "Kaneyama") o5 = {dimension of the variety => 2 } number of affine charts => 4 rank of the vector bundle => 2 o5 : ToricVectorBundleKaneyama |
i6 : E2 = tangentBundle(hirzebruchFan 3,"Type" => "Kaneyama") o6 = {dimension of the variety => 2 } number of affine charts => 4 rank of the vector bundle => 2 o6 : ToricVectorBundleKaneyama |
i7 : E = E1 ++ E2 o7 = {dimension of the variety => 2 } number of affine charts => 4 rank of the vector bundle => 4 o7 : ToricVectorBundleKaneyama |
i8 : details E o8 = (HashTable{0 => (| 0 -1 |, | 0 0 1 -3 |)}, HashTable{(0, 1) => | 1 0 | 1 3 | | 0 0 0 -1 | | 0 1 1 => (| 0 -1 |, | 0 0 1 3 |) | 0 0 | -1 3 | | 0 0 0 1 | | 0 0 2 => (| 1 0 |, | 0 0 -1 0 |) (0, 2) => | 1 0 | 0 1 | | 0 0 0 -1 | | 0 1 3 => (| 1 0 |, | 0 0 -1 0 |) | 0 0 | 0 -1 | | 0 0 0 1 | | 0 0 (1, 3) => | 1 0 | 0 1 | 0 0 | 0 0 (2, 3) => | 1 0 | 0 1 | 0 0 | 0 0 ------------------------------------------------------------------------ 0 0 |}) 0 0 | 1 0 | 0 -1 | 0 0 | 0 0 | -1 0 | 3 1 | 0 0 | 0 0 | -1 0 | -3 1 | 0 0 | 0 0 | 1 0 | 0 -1 | o8 : Sequence |