i1 : E = toricVectorBundle(2,pp1ProductFan 2) o1 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o1 : ToricVectorBundleKlyachko |
i2 : E = addBase(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}}) o2 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o2 : ToricVectorBundleKlyachko |
i3 : isVectorBundle E o3 = true |
i4 : F = toricVectorBundle(1,normalFan crossPolytope 3) o4 = {dimension of the variety => 3 } number of affine charts => 6 number of rays => 8 rank of the vector bundle => 1 o4 : ToricVectorBundleKlyachko |
i5 : F = addFiltration(F,apply({2,1,1,2,2,1,1,2}, i -> matrix {{i}})) o5 = {dimension of the variety => 3 } number of affine charts => 6 number of rays => 8 rank of the vector bundle => 1 o5 : ToricVectorBundleKlyachko |
i6 : isVectorBundle F o6 = false |
i7 : E = toricVectorBundle(2,pp1ProductFan 2,"Type" => "Kaneyama") o7 = {dimension of the variety => 2 } number of affine charts => 4 rank of the vector bundle => 2 o7 : ToricVectorBundleKaneyama |
i8 : isVectorBundle E o8 = true |
i9 : E = addBaseChange(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}}) o9 = {dimension of the variety => 2 } number of affine charts => 4 rank of the vector bundle => 2 o9 : ToricVectorBundleKaneyama |
i10 : isVectorBundle E o10 = false |
The object isVectorBundle is a method function.