derlog computes the module of logarithmic vector fields to an affine variety defined by I or f; these are the ambient vector fields tangent to the variety.
derlogH computes the module of ambient vector fields tangent to all level sets of f or of the entries of L.
Note that derlog(I)=der(I,I) and derlogH(L)=der(L,0); see der.
i1 : R=QQ[x,y,z]; |
i2 : f=x*y-z^2; |
i3 : derlog(ideal (f)) o3 = image | 2x 0 2z 0 | | 0 2y 0 2z | | z z y x | 3 o3 : R-module, submodule of R |
i4 : derlogH(f) o4 = image | x 2z 0 | | -y 0 2z | | 0 y x | 3 o4 : R-module, submodule of R |
i5 : dH=derlogH({f}) o5 = image | x 2z 0 | | -y 0 2z | | 0 y x | 3 o5 : R-module, submodule of R |
Although every element of dH annihilates f, they do not annihilate the ideal generated by f:
i6 : applyVectorField(dH,f) o6 = ideal (0, 0, 0) o6 : Ideal of R |
i7 : applyVectorField(dH,ideal(f)) 3 2 2 2 2 o7 = ideal (x*y*z - z , x*y - y*z , x y - x*z ) o7 : Ideal of R |
The object derlog is a method function.