Checks whether the module generated by the provided vector fields is closed under the Lie bracket of vector fields (see bracket) and thus forms a Lie algebra.
i1 : R=QQ[a,b,c,d]; |
An action of SL_2 on GL_2 differentiates to the following vector fields:
i2 : e=matrix {{c},{d},{0},{0}}; 4 1 o2 : Matrix R <--- R |
i3 : f=matrix {{0},{0},{a},{b}}; 4 1 o3 : Matrix R <--- R |
i4 : h=matrix {{-a},{-b},{c},{d}}; 4 1 o4 : Matrix R <--- R |
Verify that this is sl_2, where [e,f]=h, [h,f]=-2f, [h,e]=2e.
i5 : bracket(e,f)-h==0 o5 = true |
i6 : bracket(h,f)+2*f==0 o6 = true |
i7 : bracket(h,e)-2*e==0 o7 = true |
In particular, the module these generate form a Lie algebra:
i8 : isLieAlgebra(image (e|f|h)) o8 = true |
There is no isLieAlgebra(Matrix), yet.
The object isLieAlgebra is a method function.