Check if the vector field(s) given are in the module of logarithmic vector fields of I (see derlog). This function does not compute derlog(I), but instead applies the vector fields to the generators of I and checks if the result lies in I.
i1 : R=QQ[x,y,z]; |
i2 : f=x*y-z^2; |
i3 : I=ideal (f); o3 : Ideal of R |
i4 : M=matrix {{x,2*z,2*z},{y,0,0},{z,y,x}}; 3 3 o4 : Matrix R <--- R |
i5 : applyVectorField(M,{f}) 2 o5 = {2x*y - 2z , 0, - 2x*z + 2y*z} o5 : List |
i6 : isLogarithmic(M,I) o6 = false |
i7 : isLogarithmic(M_{0,1},I) o7 = true |
i8 : isLogarithmic(derlog(I),I) o8 = true |
The object isLogarithmic is a method function.