Given an ideal I, integer n, and irrelevant ideal irr, idealSheafGens searches through all n-subsets of the generators of I. If a subset generates the same irr-saturated ideal as the irr-saturation of I, then the ideal generated by that subset is added to a list. After running through all subsets, the list is returned.
i1 : R = ZZ/101[x_0,x_1,x_2,x_3,x_4,Degrees=>{2:{1,0},3:{0,1}}]; |
i2 : B = intersect(ideal(x_0,x_1),ideal(x_2,x_3,x_4)); o2 : Ideal of R |
i3 : I = ideal(x_0^2*x_2^2+x_1^2*x_3^2+x_0*x_1*x_4^2, x_0^3*x_4+x_1^3*(x_2+x_3)); o3 : Ideal of R |
i4 : idealSheafGens(2,I,B) 2 2 2 2 2 3 3 3 o4 = {ideal (x x + x x + x x x , x x + x x + x x )} 0 2 1 3 0 1 4 1 2 1 3 0 4 o4 : List |
The object idealSheafGens is a method function with options.