Macaulay2 » Documentation
Packages » CharacteristicClasses :: Euler
next | previous | forward | backward | up | index | toc

Euler -- The Euler Characteristic

Synopsis

Description

For a subscheme V of an applicable toric variety X, this command computes the Euler characteristic

i1 : kk=ZZ/32749;
i2 : R=kk[x_0..x_4]

o2 = R

o2 : PolynomialRing
i3 : I=ideal(random(1,R),random(2,R))

                                                              2             
o3 = ideal (107x  + 4376x  - 6316x  + 3187x  + 3783x , - 6053x  + 8570x x  +
                0        1        2        3        4         0        0 1  
     ------------------------------------------------------------------------
           2                               2                                 
     10359x  - 16090x x  - 8210x x  + 5071x  + 8444x x  - 8997x x  - 6949x x 
           1         0 2        1 2        2        0 3        1 3        2 3
     ------------------------------------------------------------------------
             2                                                        2
     - 14254x  - 11226x x  + 2653x x  + 12365x x  - 10226x x  - 12696x )
             3         0 4        1 4         2 4         3 4         4

o3 : Ideal of R
i4 : time Euler(I,InputIsSmooth=>true)
     -- used 0.038085 seconds

o4 = 4
i5 : time Euler I
     -- used 0.0976904 seconds

o5 = 4
i6 : EulerIHash=Euler(I,Output=>HashForm);
i7 : A=ring EulerIHash#"CSM"

o7 = A

o7 : QuotientRing
i8 : EulerIHash#{0,1}==CSM(A,ideal(I_0*I_1))

o8 = true
i9 : J=I+ideal(x_0*x_2-x_3*x_0)

                                                              2             
o9 = ideal (107x  + 4376x  - 6316x  + 3187x  + 3783x , - 6053x  + 8570x x  +
                0        1        2        3        4         0        0 1  
     ------------------------------------------------------------------------
           2                               2                                 
     10359x  - 16090x x  - 8210x x  + 5071x  + 8444x x  - 8997x x  - 6949x x 
           1         0 2        1 2        2        0 3        1 3        2 3
     ------------------------------------------------------------------------
             2                                                        2
     - 14254x  - 11226x x  + 2653x x  + 12365x x  - 10226x x  - 12696x , x x 
             3         0 4        1 4         2 4         3 4         4   0 2
     ------------------------------------------------------------------------
     - x x )
        0 3

o9 : Ideal of R

Note that the ideal J above is a complete intersection, thus we may change the method option which may speed computation in some cases. We may also note that the ideal generated by the first 2 generators of I defines a smooth scheme and input this information into the method. This may also improve computation speed.

i10 : time Euler(J,Method=>DirectCompleteInt)
     -- used 0.0610646 seconds

o10 = 2
i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
     -- used 0.0491587 seconds

o11 = 2

Now consider an example in \PP^2 \times \PP^2.

i12 : R=MultiProjCoordRing({2,2})

o12 = R

o12 : PolynomialRing
i13 : r=gens R

o13 = {x , x , x , x , x , x }
        0   1   2   3   4   5

o13 : List
i14 : K=ideal(r_0^2*r_3-r_4*r_1*r_2,r_2^2*r_5)

              2              2
o14 = ideal (x x  - x x x , x x )
              0 3    1 2 4   2 5

o14 : Ideal of R
i15 : EulerK=Euler(K)

o15 = 7
i16 : csmK= CSM(K)

        2 2     2         2    2            2
o16 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
        1 2     1 2     1 2    1     1 2    2

      ZZ[h ..h ]
          1   2
o16 : ----------
         3   3
       (h , h )
         1   2
i17 : EulerK==Euler(csmK)

o17 = true

In the case where the ambient space is a toric variety which is not a product of projective spaces we must load the NormalToricVarieties package and must also input the toric variety. If the toric variety is a product of projective space it is recommended to use the form above rather than inputting the toric variety for efficiency reasons.

i18 : needsPackage "NormalToricVarieties"

o18 = NormalToricVarieties

o18 : Package
i19 : Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}

o19 = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {-1, -1, 0}, {0, 0, -1}}

o19 : List
i20 : Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}

o20 = {{0, 1, 2}, {1, 2, 3}, {0, 2, 3}, {0, 1, 4}, {1, 3, 4}, {0, 3, 4}}

o20 : List
i21 : X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)

o21 = X

o21 : NormalToricVariety
i22 : CheckToricVarietyValid(X)

o22 = true
i23 : R=ring(X)

o23 = R

o23 : PolynomialRing
i24 : I=ideal(R_0^4*R_1,R_0*R_3*R_4*R_2-R_2^2*R_0^2)

              4       2 2
o24 = ideal (x x , - x x  + x x x x )
              0 1     0 2    0 2 3 4

o24 : Ideal of R
i25 : csmI=CSM(X,I)

        2       2
o25 = 5x x  + 3x  + 4x x  + x
        3 4     3     3 4    3

                      ZZ[x ..x ]
                          0   4
o25 : -----------------------------------------
      (x x , x x x , x  - x , x  - x , x  - x )
        2 4   0 1 3   0    3   1    3   2    4
i26 : EulerI=Euler(X,I)

o26 = 5
i27 : Euler(csmI)==EulerI

o27 = true

All the examples were done using symbolic computations with Gr\"obner bases. Changing the option CompMethod to bertini will do the main computations numerically, provided Bertini is installed and configured. Note that the bertini and PnResidual options may only be used for subschemes of \PP^n.

Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under probabilistic algorithm.

Ways to use Euler :

For the programmer

The object Euler is a method function with options.