Macaulay2 » Documentation
Packages » Complexes :: canonicalMap
next | previous | forward | backward | up | index | toc

canonicalMap -- gets the natural map arising from various constructions

Synopsis

Description

A canonical map, also called a natural map, is a map that arises naturally from the definition or the construction of the object.

The following six constructions are supported: kernel, cokernel, image, coimage, cone, and cylinder.

The kernel of a complex map comes with a natural injection into the source complex. This natural map is always a complex morphism.

i1 : R = ZZ/101[a,b,c,d];
i2 : D = freeResolution coker vars R

      1      4      6      4      1
o2 = R  <-- R  <-- R  <-- R  <-- R
                                  
     0      1      2      3      4

o2 : Complex
i3 : C = (freeResolution coker matrix"a,b,c")[1]

      1      3      3      1
o3 = R  <-- R  <-- R  <-- R
                           
     -1     0      1      2

o3 : Complex
i4 : f = randomComplexMap(D, C, Cycle=>true)

                    1
o4 = -1 : 0 <----- R  : -1
               0

          1                                                           3
     0 : R  <------------------------------------------------------- R  : 0
               | -46a+17b-8c+26d -38a-2b+23c-10d -30a-18b-9c+37d |

          4                                                               3
     1 : R  <----------------------------------------------------------- R  : 1
               {1} | 38a+3b-10c+25d  30a+36b+14c-9d -47b-19c+2d      |
               {1} | -47a+17b-29c-8d -18a+39c-22d   -24a+18b-32c-27d |
               {1} | -13a+21b-34d    50a-22b-8c+24d -19a+39b+23c-18d |
               {1} | -15a+34b+34c    -28a+22b+2c    -2a-10b+8c       |

          6                               1
     2 : R  <--------------------------- R  : 2
               {2} | 24a-36b-30c-29d |
               {2} | 19a+19b-10c-29d |
               {2} | -8a-22b-29c-24d |
               {2} | 2a+38b-47c      |
               {2} | 45a+22b+16c     |
               {2} | -47a-48b-34c    |

o4 : ComplexMap
i5 : assert isComplexMorphism f
i6 : K1 = kernel f

      1
o6 = R  <-- image {1} | -14a-22b-50c-9d -32b+17c-42d -27a-21b+50c+27d | <-- image 0 <-- image 0
                  {1} | a+15b-13c+17d   22b+40c+33d  -27b+6c+10d      |                  
     -1           {1} | 0               b+31c-38d    a+27c-19d        |     1           2
             
            0

o6 : Complex
i7 : g = canonicalMap(source f, K1)

           1             1
o7 = -1 : R  <--------- R  : -1
                | 1 |

          3
     0 : R  <--------------------------------------------------------- image {1} | -14a-22b-50c-9d -32b+17c-42d -27a-21b+50c+27d | : 0
               {1} | -14a-22b-50c-9d -32b+17c-42d -27a-21b+50c+27d |         {1} | a+15b-13c+17d   22b+40c+33d  -27b+6c+10d      |
               {1} | a+15b-13c+17d   22b+40c+33d  -27b+6c+10d      |         {1} | 0               b+31c-38d    a+27c-19d        |
               {1} | 0               b+31c-38d    a+27c-19d        |

          3
     1 : R  <----- image 0 : 1
               0

          1
     2 : R  <----- image 0 : 2
               0

o7 : ComplexMap
i8 : degree g

o8 = 0
i9 : assert(isWellDefined g and isComplexMorphism g)
i10 : f2 = randomComplexMap(D, C)

                     1
o10 = -1 : 0 <----- R  : -1
                0

           1                                                           3
      0 : R  <------------------------------------------------------- R  : 0
                | 47a+19b-16c+7d 15a-23b+39c+43d -17a-11b+48c+36d |

           4                                                                3
      1 : R  <------------------------------------------------------------ R  : 1
                {1} | 35a+11b-38c+33d -47a+15b-37c-13d -48a-15b+39c    |
                {1} | 40a+11b+46c-28d -10a+30b-18c+39d 33a-49b-33c-19d |
                {1} | a-3b+22c-47d    27a-22b+32c-9d   17a-20b+44c-39d |
                {1} | -23a-7b+2c+29d  -32a-20b+24c-30d 36a+9b-39c+4d   |

           6                               1
      2 : R  <--------------------------- R  : 2
                {2} | 13a-26b+22c-49d |
                {2} | -11a-8b+43c-8d  |
                {2} | 36a-3b-22c-30d  |
                {2} | 41a+16b-28c-6d  |
                {2} | 35a-9b-35c+6d   |
                {2} | 40a+3b-31c+25d  |

o10 : ComplexMap
i11 : assert not isComplexMorphism f2
i12 : K2 = kernel f2

       1
o12 = R  <-- image {1} | -39a-21b+40c-31d -20b-28c+37d 24a+47b+6c+38d | <-- image 0 <-- image 0
                   {1} | a+9b+19c-2d      -17b+26c-23d -49b-32c+5d    |                  
      -1           {1} | 0                b-c-19d      a+28c-33d      |     1           2
              
             0

o12 : Complex
i13 : g2 = canonicalMap(source f2, K2)

            1             1
o13 = -1 : R  <--------- R  : -1
                 | 1 |

           3
      0 : R  <-------------------------------------------------------- image {1} | -39a-21b+40c-31d -20b-28c+37d 24a+47b+6c+38d | : 0
                {1} | -39a-21b+40c-31d -20b-28c+37d 24a+47b+6c+38d |         {1} | a+9b+19c-2d      -17b+26c-23d -49b-32c+5d    |
                {1} | a+9b+19c-2d      -17b+26c-23d -49b-32c+5d    |         {1} | 0                b-c-19d      a+28c-33d      |
                {1} | 0                b-c-19d      a+28c-33d      |

           3
      1 : R  <----- image 0 : 1
                0

           1
      2 : R  <----- image 0 : 2
                0

o13 : ComplexMap
i14 : assert(isWellDefined g2 and isComplexMorphism g2)

The cokernel of a complex map comes with a natural surjection from the target complex.

i15 : Q = cokernel f

                                                                                                                                                                                  4      1
o15 = cokernel | -46a+17b-8c+26d -38a-2b+23c-10d -30a-18b-9c+37d | <-- cokernel {1} | 38a+3b-10c+25d  30a+36b+14c-9d -47b-19c+2d      | <-- cokernel {2} | 24a-36b-30c-29d | <-- R  <-- R
                                                                                {1} | -47a+17b-29c-8d -18a+39c-22d   -24a+18b-32c-27d |              {2} | 19a+19b-10c-29d |             
      0                                                                         {1} | -13a+21b-34d    50a-22b-8c+24d -19a+39b+23c-18d |              {2} | -8a-22b-29c-24d |     3      4
                                                                                {1} | -15a+34b+34c    -28a+22b+2c    -2a-10b+8c       |              {2} | 2a+38b-47c      |
                                                                                                                                                     {2} | 45a+22b+16c     |
                                                                       1                                                                             {2} | -47a-48b-34c    |
                                                                                                                                             
                                                                                                                                            2

o15 : Complex
i16 : g3 = canonicalMap(Q, target f)

                                                                                   1
o16 = 0 : cokernel | -46a+17b-8c+26d -38a-2b+23c-10d -30a-18b-9c+37d | <--------- R  : 0
                                                                          | 1 |

                                                                                                 4
      1 : cokernel {1} | 38a+3b-10c+25d  30a+36b+14c-9d -47b-19c+2d      | <------------------- R  : 1
                   {1} | -47a+17b-29c-8d -18a+39c-22d   -24a+18b-32c-27d |    {1} | 1 0 0 0 |
                   {1} | -13a+21b-34d    50a-22b-8c+24d -19a+39b+23c-18d |    {1} | 0 1 0 0 |
                   {1} | -15a+34b+34c    -28a+22b+2c    -2a-10b+8c       |    {1} | 0 0 1 0 |
                                                                              {1} | 0 0 0 1 |

                                                                     6
      2 : cokernel {2} | 24a-36b-30c-29d | <----------------------- R  : 2
                   {2} | 19a+19b-10c-29d |    {2} | 1 0 0 0 0 0 |
                   {2} | -8a-22b-29c-24d |    {2} | 0 1 0 0 0 0 |
                   {2} | 2a+38b-47c      |    {2} | 0 0 1 0 0 0 |
                   {2} | 45a+22b+16c     |    {2} | 0 0 0 1 0 0 |
                   {2} | -47a-48b-34c    |    {2} | 0 0 0 0 1 0 |
                                              {2} | 0 0 0 0 0 1 |

           4                       4
      3 : R  <------------------- R  : 3
                {3} | 1 0 0 0 |
                {3} | 0 1 0 0 |
                {3} | 0 0 1 0 |
                {3} | 0 0 0 1 |

           1                 1
      4 : R  <------------- R  : 4
                {4} | 1 |

o16 : ComplexMap
i17 : assert(isWellDefined g3 and isComplexMorphism g3)

The image of a complex map comes with a natural injection into the target complex.

i18 : I = image f

o18 = image | -46a+17b-8c+26d -38a-2b+23c-10d -30a-18b-9c+37d | <-- image {1} | 38a+3b-10c+25d  30a+36b+14c-9d -47b-19c+2d      | <-- image {2} | 24a-36b-30c-29d | <-- image 0 <-- image 0
                                                                          {1} | -47a+17b-29c-8d -18a+39c-22d   -24a+18b-32c-27d |           {2} | 19a+19b-10c-29d |                  
      0                                                                   {1} | -13a+21b-34d    50a-22b-8c+24d -19a+39b+23c-18d |           {2} | -8a-22b-29c-24d |     3           4
                                                                          {1} | -15a+34b+34c    -28a+22b+2c    -2a-10b+8c       |           {2} | 2a+38b-47c      |
                                                                                                                                            {2} | 45a+22b+16c     |
                                                                    1                                                                       {2} | -47a-48b-34c    |
                                                                                                                                       
                                                                                                                                      2

o18 : Complex
i19 : g4 = canonicalMap(target f, I)

           1
o19 = 0 : R  <------------------------------------------------------- image | -46a+17b-8c+26d -38a-2b+23c-10d -30a-18b-9c+37d | : 0
                | -46a+17b-8c+26d -38a-2b+23c-10d -30a-18b-9c+37d |

           4
      1 : R  <----------------------------------------------------------- image {1} | 38a+3b-10c+25d  30a+36b+14c-9d -47b-19c+2d      | : 1
                {1} | 38a+3b-10c+25d  30a+36b+14c-9d -47b-19c+2d      |         {1} | -47a+17b-29c-8d -18a+39c-22d   -24a+18b-32c-27d |
                {1} | -47a+17b-29c-8d -18a+39c-22d   -24a+18b-32c-27d |         {1} | -13a+21b-34d    50a-22b-8c+24d -19a+39b+23c-18d |
                {1} | -13a+21b-34d    50a-22b-8c+24d -19a+39b+23c-18d |         {1} | -15a+34b+34c    -28a+22b+2c    -2a-10b+8c       |
                {1} | -15a+34b+34c    -28a+22b+2c    -2a-10b+8c       |

           6
      2 : R  <--------------------------- image {2} | 24a-36b-30c-29d | : 2
                {2} | 24a-36b-30c-29d |         {2} | 19a+19b-10c-29d |
                {2} | 19a+19b-10c-29d |         {2} | -8a-22b-29c-24d |
                {2} | -8a-22b-29c-24d |         {2} | 2a+38b-47c      |
                {2} | 2a+38b-47c      |         {2} | 45a+22b+16c     |
                {2} | 45a+22b+16c     |         {2} | -47a-48b-34c    |
                {2} | -47a-48b-34c    |

           4
      3 : R  <----- image 0 : 3
                0

           1
      4 : R  <----- image 0 : 4
                0

o19 : ComplexMap
i20 : assert(isWellDefined g4 and isComplexMorphism g4)

The coimage of a complex map comes with a natural surjection from the source complex. This natural map is always a complex morphism.

i21 : J = coimage f

                                                                                             3      1
o21 = cokernel | 1 | <-- cokernel {1} | -14a-22b-50c-9d -32b+17c-42d -27a-21b+50c+27d | <-- R  <-- R
                                  {1} | a+15b-13c+17d   22b+40c+33d  -27b+6c+10d      |             
      -1                          {1} | 0               b+31c-38d    a+27c-19d        |     1      2
                          
                         0

o21 : Complex
i22 : g5 = canonicalMap(J, source f)

                                  1
o22 = -1 : cokernel | 1 | <----- R  : -1
                             0

                                                                                             3
      0 : cokernel {1} | -14a-22b-50c-9d -32b+17c-42d -27a-21b+50c+27d | <----------------- R  : 0
                   {1} | a+15b-13c+17d   22b+40c+33d  -27b+6c+10d      |    {1} | 1 0 0 |
                   {1} | 0               b+31c-38d    a+27c-19d        |    {1} | 0 1 0 |
                                                                            {1} | 0 0 1 |

           3                     3
      1 : R  <----------------- R  : 1
                {2} | 1 0 0 |
                {2} | 0 1 0 |
                {2} | 0 0 1 |

           1                 1
      2 : R  <------------- R  : 2
                {3} | 1 |

o22 : ComplexMap
i23 : assert(isWellDefined g5 and isComplexMorphism g5)
i24 : J2 = coimage f2

                                                                                            3      1
o24 = cokernel | 1 | <-- cokernel {1} | -39a-21b+40c-31d -20b-28c+37d 24a+47b+6c+38d | <-- R  <-- R
                                  {1} | a+9b+19c-2d      -17b+26c-23d -49b-32c+5d    |             
      -1                          {1} | 0                b-c-19d      a+28c-33d      |     1      2
                          
                         0

o24 : Complex
i25 : g6 = canonicalMap(J2, source f2)

                                  1
o25 = -1 : cokernel | 1 | <----- R  : -1
                             0

                                                                                            3
      0 : cokernel {1} | -39a-21b+40c-31d -20b-28c+37d 24a+47b+6c+38d | <----------------- R  : 0
                   {1} | a+9b+19c-2d      -17b+26c-23d -49b-32c+5d    |    {1} | 1 0 0 |
                   {1} | 0                b-c-19d      a+28c-33d      |    {1} | 0 1 0 |
                                                                           {1} | 0 0 1 |

           3                     3
      1 : R  <----------------- R  : 1
                {2} | 1 0 0 |
                {2} | 0 1 0 |
                {2} | 0 0 1 |

           1                 1
      2 : R  <------------- R  : 2
                {3} | 1 |

o25 : ComplexMap
i26 : assert(isWellDefined g6 and isComplexMorphism g6)

The cone of a complex morphism comes with two natural maps. Given a map $f : C \to D$, let $E$ denote the cone of $f$. The first is a natural injection from the target $D$ of $f$ into $E$. The second is a natural surjection from $E$ to $C[-1]$. Together, these maps form a short exact sequence of complexes.

i27 : E = cone f

       2      7      9      5      1
o27 = R  <-- R  <-- R  <-- R  <-- R
                                   
      0      1      2      3      4

o27 : Complex
i28 : g = canonicalMap(E, target f)

           2             1
o28 = 0 : R  <--------- R  : 0
                | 0 |
                | 1 |

           7                       4
      1 : R  <------------------- R  : 1
                {1} | 0 0 0 0 |
                {1} | 0 0 0 0 |
                {1} | 0 0 0 0 |
                {1} | 1 0 0 0 |
                {1} | 0 1 0 0 |
                {1} | 0 0 1 0 |
                {1} | 0 0 0 1 |

           9                           6
      2 : R  <----------------------- R  : 2
                {2} | 0 0 0 0 0 0 |
                {2} | 0 0 0 0 0 0 |
                {2} | 0 0 0 0 0 0 |
                {2} | 1 0 0 0 0 0 |
                {2} | 0 1 0 0 0 0 |
                {2} | 0 0 1 0 0 0 |
                {2} | 0 0 0 1 0 0 |
                {2} | 0 0 0 0 1 0 |
                {2} | 0 0 0 0 0 1 |

           5                       4
      3 : R  <------------------- R  : 3
                {3} | 0 0 0 0 |
                {3} | 1 0 0 0 |
                {3} | 0 1 0 0 |
                {3} | 0 0 1 0 |
                {3} | 0 0 0 1 |

           1                 1
      4 : R  <------------- R  : 4
                {4} | 1 |

o28 : ComplexMap
i29 : h = canonicalMap((source f)[-1], E)

           1               2
o29 = 0 : R  <----------- R  : 0
                | 1 0 |

           3                             7
      1 : R  <------------------------- R  : 1
                {1} | 1 0 0 0 0 0 0 |
                {1} | 0 1 0 0 0 0 0 |
                {1} | 0 0 1 0 0 0 0 |

           3                                 9
      2 : R  <----------------------------- R  : 2
                {2} | 1 0 0 0 0 0 0 0 0 |
                {2} | 0 1 0 0 0 0 0 0 0 |
                {2} | 0 0 1 0 0 0 0 0 0 |

           1                         5
      3 : R  <--------------------- R  : 3
                {3} | 1 0 0 0 0 |

o29 : ComplexMap
i30 : assert(isWellDefined g and isWellDefined h)
i31 : assert(isComplexMorphism g and isComplexMorphism h)
i32 : assert isShortExactSequence(h,g)

The cylinder of a complex map comes with four natural maps. Given a map $f : C \to D$, let $F$ denote the cylinder of $f$. The first is the natural injection from the source $C$ of $f$ into the cylinder $F$. Together these two maps form a short exact sequence of complexes.

i33 : F = cylinder f

       1      5      10      10      5      1
o33 = R  <-- R  <-- R   <-- R   <-- R  <-- R
                                            
      -1     0      1       2       3      4

o33 : Complex
i34 : g = canonicalMap(F, source f)

            1             1
o34 = -1 : R  <--------- R  : -1
                 | 1 |

           5                     3
      0 : R  <----------------- R  : 0
                {0} | 0 0 0 |
                {1} | 1 0 0 |
                {1} | 0 1 0 |
                {1} | 0 0 1 |
                {0} | 0 0 0 |

           10                     3
      1 : R   <----------------- R  : 1
                 {1} | 0 0 0 |
                 {1} | 0 0 0 |
                 {1} | 0 0 0 |
                 {2} | 1 0 0 |
                 {2} | 0 1 0 |
                 {2} | 0 0 1 |
                 {1} | 0 0 0 |
                 {1} | 0 0 0 |
                 {1} | 0 0 0 |
                 {1} | 0 0 0 |

           10                 1
      2 : R   <------------- R  : 2
                 {2} | 0 |
                 {2} | 0 |
                 {2} | 0 |
                 {3} | 1 |
                 {2} | 0 |
                 {2} | 0 |
                 {2} | 0 |
                 {2} | 0 |
                 {2} | 0 |
                 {2} | 0 |

o34 : ComplexMap
i35 : h = canonicalMap(E, F)

           2                     5
o35 = 0 : R  <----------------- R  : 0
                | 1 0 0 0 0 |
                | 0 0 0 0 1 |

           7                                   10
      1 : R  <------------------------------- R   : 1
                {1} | 1 0 0 0 0 0 0 0 0 0 |
                {1} | 0 1 0 0 0 0 0 0 0 0 |
                {1} | 0 0 1 0 0 0 0 0 0 0 |
                {1} | 0 0 0 0 0 0 1 0 0 0 |
                {1} | 0 0 0 0 0 0 0 1 0 0 |
                {1} | 0 0 0 0 0 0 0 0 1 0 |
                {1} | 0 0 0 0 0 0 0 0 0 1 |

           9                                   10
      2 : R  <------------------------------- R   : 2
                {2} | 1 0 0 0 0 0 0 0 0 0 |
                {2} | 0 1 0 0 0 0 0 0 0 0 |
                {2} | 0 0 1 0 0 0 0 0 0 0 |
                {2} | 0 0 0 0 1 0 0 0 0 0 |
                {2} | 0 0 0 0 0 1 0 0 0 0 |
                {2} | 0 0 0 0 0 0 1 0 0 0 |
                {2} | 0 0 0 0 0 0 0 1 0 0 |
                {2} | 0 0 0 0 0 0 0 0 1 0 |
                {2} | 0 0 0 0 0 0 0 0 0 1 |

           5                         5
      3 : R  <--------------------- R  : 3
                {3} | 1 0 0 0 0 |
                {3} | 0 1 0 0 0 |
                {3} | 0 0 1 0 0 |
                {3} | 0 0 0 1 0 |
                {3} | 0 0 0 0 1 |

           1                 1
      4 : R  <------------- R  : 4
                {4} | 1 |

o35 : ComplexMap
i36 : assert(isWellDefined g and isWellDefined h)
i37 : assert(isComplexMorphism g and isComplexMorphism h)
i38 : assert isShortExactSequence(h,g)

The third is the natural injection from the target $D$ of $F$ into the cylinder $F$. The fourth is the natural surjection from the cylinder $F$ to the target $D$ of $f$. However, these two maps do not form a short exact sequence of complexes.

i39 : g' = canonicalMap(F, target f)

           5                 1
o39 = 0 : R  <------------- R  : 0
                {0} | 0 |
                {1} | 0 |
                {1} | 0 |
                {1} | 0 |
                {0} | 1 |

           10                       4
      1 : R   <------------------- R  : 1
                 {1} | 0 0 0 0 |
                 {1} | 0 0 0 0 |
                 {1} | 0 0 0 0 |
                 {2} | 0 0 0 0 |
                 {2} | 0 0 0 0 |
                 {2} | 0 0 0 0 |
                 {1} | 1 0 0 0 |
                 {1} | 0 1 0 0 |
                 {1} | 0 0 1 0 |
                 {1} | 0 0 0 1 |

           10                           6
      2 : R   <----------------------- R  : 2
                 {2} | 0 0 0 0 0 0 |
                 {2} | 0 0 0 0 0 0 |
                 {2} | 0 0 0 0 0 0 |
                 {3} | 0 0 0 0 0 0 |
                 {2} | 1 0 0 0 0 0 |
                 {2} | 0 1 0 0 0 0 |
                 {2} | 0 0 1 0 0 0 |
                 {2} | 0 0 0 1 0 0 |
                 {2} | 0 0 0 0 1 0 |
                 {2} | 0 0 0 0 0 1 |

           5                       4
      3 : R  <------------------- R  : 3
                {3} | 0 0 0 0 |
                {3} | 1 0 0 0 |
                {3} | 0 1 0 0 |
                {3} | 0 0 1 0 |
                {3} | 0 0 0 1 |

           1                 1
      4 : R  <------------- R  : 4
                {4} | 1 |

o39 : ComplexMap
i40 : h' = canonicalMap(target f, F)

           1                                                               5
o40 = 0 : R  <----------------------------------------------------------- R  : 0
                | 0 -46a+17b-8c+26d -38a-2b+23c-10d -30a-18b-9c+37d 1 |

           4                                                                             10
      1 : R  <------------------------------------------------------------------------- R   : 1
                {1} | 0 0 0 38a+3b-10c+25d  30a+36b+14c-9d -47b-19c+2d      1 0 0 0 |
                {1} | 0 0 0 -47a+17b-29c-8d -18a+39c-22d   -24a+18b-32c-27d 0 1 0 0 |
                {1} | 0 0 0 -13a+21b-34d    50a-22b-8c+24d -19a+39b+23c-18d 0 0 1 0 |
                {1} | 0 0 0 -15a+34b+34c    -28a+22b+2c    -2a-10b+8c       0 0 0 1 |

           6                                                 10
      2 : R  <--------------------------------------------- R   : 2
                {2} | 0 0 0 24a-36b-30c-29d 1 0 0 0 0 0 |
                {2} | 0 0 0 19a+19b-10c-29d 0 1 0 0 0 0 |
                {2} | 0 0 0 -8a-22b-29c-24d 0 0 1 0 0 0 |
                {2} | 0 0 0 2a+38b-47c      0 0 0 1 0 0 |
                {2} | 0 0 0 45a+22b+16c     0 0 0 0 1 0 |
                {2} | 0 0 0 -47a-48b-34c    0 0 0 0 0 1 |

           4                         5
      3 : R  <--------------------- R  : 3
                {3} | 0 1 0 0 0 |
                {3} | 0 0 1 0 0 |
                {3} | 0 0 0 1 0 |
                {3} | 0 0 0 0 1 |

           1                 1
      4 : R  <------------- R  : 4
                {4} | 1 |

o40 : ComplexMap
i41 : assert(isWellDefined g' and isWellDefined h')
i42 : assert(isComplexMorphism g' and isComplexMorphism h')
i43 : assert not isShortExactSequence(h',g')

When $D == C$, the optional argument UseTarget selects the appropriate natural map.

i44 : f' = id_C

            1             1
o44 = -1 : R  <--------- R  : -1
                 | 1 |

           3                     3
      0 : R  <----------------- R  : 0
                {1} | 1 0 0 |
                {1} | 0 1 0 |
                {1} | 0 0 1 |

           3                     3
      1 : R  <----------------- R  : 1
                {2} | 1 0 0 |
                {2} | 0 1 0 |
                {2} | 0 0 1 |

           1                 1
      2 : R  <------------- R  : 2
                {3} | 1 |

o44 : ComplexMap
i45 : F' = cylinder f'

       2      7      9      5      1
o45 = R  <-- R  <-- R  <-- R  <-- R
                                   
      -1     0      1      2      3

o45 : Complex
i46 : g = canonicalMap(F', C, UseTarget=>true)

            2             1
o46 = -1 : R  <--------- R  : -1
                 | 0 |
                 | 1 |

           7                     3
      0 : R  <----------------- R  : 0
                {0} | 0 0 0 |
                {1} | 0 0 0 |
                {1} | 0 0 0 |
                {1} | 0 0 0 |
                {1} | 1 0 0 |
                {1} | 0 1 0 |
                {1} | 0 0 1 |

           9                     3
      1 : R  <----------------- R  : 1
                {1} | 0 0 0 |
                {1} | 0 0 0 |
                {1} | 0 0 0 |
                {2} | 0 0 0 |
                {2} | 0 0 0 |
                {2} | 0 0 0 |
                {2} | 1 0 0 |
                {2} | 0 1 0 |
                {2} | 0 0 1 |

           5                 1
      2 : R  <------------- R  : 2
                {2} | 0 |
                {2} | 0 |
                {2} | 0 |
                {3} | 0 |
                {3} | 1 |

o46 : ComplexMap
i47 : h = canonicalMap(F', C, UseTarget=>false)

            2             1
o47 = -1 : R  <--------- R  : -1
                 | 1 |
                 | 0 |

           7                     3
      0 : R  <----------------- R  : 0
                {0} | 0 0 0 |
                {1} | 1 0 0 |
                {1} | 0 1 0 |
                {1} | 0 0 1 |
                {1} | 0 0 0 |
                {1} | 0 0 0 |
                {1} | 0 0 0 |

           9                     3
      1 : R  <----------------- R  : 1
                {1} | 0 0 0 |
                {1} | 0 0 0 |
                {1} | 0 0 0 |
                {2} | 1 0 0 |
                {2} | 0 1 0 |
                {2} | 0 0 1 |
                {2} | 0 0 0 |
                {2} | 0 0 0 |
                {2} | 0 0 0 |

           5                 1
      2 : R  <------------- R  : 2
                {2} | 0 |
                {2} | 0 |
                {2} | 0 |
                {3} | 1 |
                {3} | 0 |

o47 : ComplexMap
i48 : assert(isWellDefined g and isWellDefined h)
i49 : assert(g != h)
i50 : assert(isComplexMorphism g and isComplexMorphism h)

See also

Ways to use canonicalMap :

For the programmer

The object canonicalMap is a method function with options.