Macaulay2 » Documentation
Packages » Complexes :: complex(HashTable)
next | previous | forward | backward | up | index | toc

complex(HashTable) -- make a chain complex

Synopsis

Description

A complex is a sequence of objects (e.g. modules), connected by maps called differentials. The composition of any two consecutive maps is zero.

The same data type is used for both chain and cochain complexes. If C is a complex, then we have C^i = C_{-i}.

We construct the Koszul complex on the generators for the ideal of the twisted cubic curve.

i1 : S = ZZ/101[a..d]

o1 = S

o1 : PolynomialRing
i2 : I = ideal(b^2-a*c, b*c-a*d, c^2-b*d)

             2                    2
o2 = ideal (b  - a*c, b*c - a*d, c  - b*d)

o2 : Ideal of S
i3 : F1 = map(S^1,,matrix{{I_0, I_1, I_2}})

o3 = | b2-ac bc-ad c2-bd |

             1      3
o3 : Matrix S  <-- S
i4 : F2 = map(source F1,,matrix{
             {0, I_2, -I_1},
             {-I_2, 0, I_0},
             {I_1, -I_0, 0}
             })

o4 = {2} | 0      c2-bd  -bc+ad |
     {2} | -c2+bd 0      b2-ac  |
     {2} | bc-ad  -b2+ac 0      |

             3      3
o4 : Matrix S  <-- S
i5 : F3 = map(source F2,,matrix{{I_0}, {I_1}, {I_2}})

o5 = {4} | b2-ac |
     {4} | bc-ad |
     {4} | c2-bd |

             3      1
o5 : Matrix S  <-- S
i6 : C = complex hashTable{1 => F1, 2 => F2, 3 => F3}

      1      3      3      1
o6 = S  <-- S  <-- S  <-- S
                           
     0      1      2      3

o6 : Complex
i7 : isWellDefined C

o7 = true

This is the primary constructor used by all of the more user friendly methods for constructing a chain complex.

Caveat

This constructor minimizes computation and does very little error checking. To verify that a complex is well constructed, use isWellDefined(Complex).

See also

Ways to use this method: