Macaulay2 » Documentation
Packages » DiffAlg :: ring(DiffAlgElement)
next | previous | forward | backward | up | index | toc

ring(DiffAlgElement) -- ring of the differential form or vector field

Synopsis

Description

This function returns the ring where the given differential form of vector field is defined.

i1 : w = newForm(2,1,2,"a")

         2               2                          2           2           
o1 = (a x  + a x x  + a x  + a x x  + a  x x  + a  x )dx  + (a x  + a x x  +
       0 0    3 0 1    9 1    6 0 2    12 1 2    15 2   0     1 0    4 0 1  
     ------------------------------------------------------------------------
         2                          2           2                2           
     a  x  + a x x  + a  x x  + a  x )dx  + (a x  + a x x  + a  x  + a x x  +
      10 1    7 0 2    13 1 2    16 2   1     2 0    5 0 1    11 1    8 0 2  
     ------------------------------------------------------------------------
                   2
     a  x x  + a  x )dx
      14 1 2    17 2   2

o1 : DiffAlgForm
i2 : ring w

      QQ[i]
o2 = ------[][a ..a  ][x ..x ][dx ..dx ]
      2        0   17   0   2    0    2
     i  + 1

o2 : PolynomialRing, 3 skew commutative variable(s)

Ways to use this method: