Macaulay2 » Documentation
Packages » ExteriorModules :: initialModule
next | previous | forward | backward | up | index | toc

initialModule -- compute the initial module of a given module

Synopsis

Description

Let $F$ a free module with homogeneous basis $\{g_1,g_2,\ldots,g_r\}.$ The elements $e_{\sigma}g_i$ with $e_{\sigma}$ a monomial of $E$ are called monomials of $F$ and $\mathrm{deg}(e_{\sigma} g_i) = \mathrm{deg}(e_{\sigma}) + \mathrm{deg}(g_i).$ Any element $f$ of $F$ is a unique linear combination of monomials with coefficients in $K$. Let > be a monomial order on $E$. The largest monomial of $f$ is called the initial monomial of $f$ and it is denoted by $\mathrm{In}(f)$. If M is a graded submodule of $F$ then the submodule of initial terms of M, denoted by $\mathrm{In}(M)$, is the submodule of $F$ generated by the initial terms of elements of M.

Example:

i1 : E=QQ[e_1..e_3,SkewCommutative=>true]

o1 = E

o1 : PolynomialRing, 3 skew commutative variable(s)
i2 : F=E^{0,0}

      2
o2 = E

o2 : E-module, free
i3 : f_1=(e_1*e_2)*F_0

o3 = | e_1e_2 |
     |    0   |

      2
o3 : E
i4 : f_2=(e_1*e_3)*F_0+(e_2*e_3)*F_1

o4 = | e_1e_3 |
     | e_2e_3 |

      2
o4 : E
i5 : f_3=(e_1*e_2*e_3)*F_1

o5 = |     0     |
     | e_1e_2e_3 |

      2
o5 : E
i6 : M=image map(F,E^{-degree f_1,-degree f_2,-degree f_3},matrix {f_1,f_2,f_3})

o6 = image | e_1e_2 e_1e_3 0         |
           | 0      e_2e_3 e_1e_2e_3 |

                             2
o6 : E-module, submodule of E
i7 : initialModule M

o7 = image | 0         e_1e_2 e_1e_3 |
           | e_1e_2e_3 0      0      |

                             2
o7 : E-module, submodule of E

See also

Ways to use initialModule :

For the programmer

The object initialModule is a method function.