Macaulay2 » Documentation
Packages » HyperplaneArrangements :: euler(CentralArrangement)
next | previous | forward | backward | up | index | toc

euler(CentralArrangement) -- compute the Euler characteristic of the projective complement

Synopsis

Description

For any topological space, the Euler characteristic is the alternating sum of its Betti numbers (a.k.a. the ranks of its homology groups). For a central hyperplane arrangement, the associated topological space is the projectivization of its complement.

The Euler characteristic for the hyperplane arrangements defined by root systems are described by simple formulas.

i1 : A2 = typeA 2

o1 = {x  - x , x  - x , x  - x }
       1    2   1    3   2    3

o1 : Hyperplane Arrangement 
i2 : euler A2

o2 = -1
i3 : assert all(5, n -> euler typeA (n+1) === (-1)^(n) * n!)
i4 : B2 = typeB 2

o4 = {x , x  - x , x  + x , x }
       1   1    2   1    2   2

o4 : Hyperplane Arrangement 
i5 : euler B2

o5 = -2
i6 : assert all(4, n -> euler typeB (n+1) === (-1)^(n) * 2^n * n!)

Given a flat, this method computes the Euler characteristic of the subarrangement indexed by the flat.

i7 : A4 = typeA 4

o7 = {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
       1    2   1    3   1    4   1    5   2    3   2    4   2    5   3    4   3    5   4    5

o7 : Hyperplane Arrangement 
i8 : F = flat(A4, {0,7})

o8 = {0, 7}

o8 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   2    3   2    4   2    5   3    4   3    5   4    5
i9 : euler F

o9 = 0
i10 : assert(euler A4_F === euler F)
i11 : euler flat(A4, {2,3,9})

o11 = -1
i12 : euler flat(A4, {0,1,2,4,5,7})

o12 = 2
i13 : euler flat(A4, {2,4,6,8})

o13 = 0

The Euler characteristic of the empty arrangement is just the Euler characteristic of the ambient projective space. For instance, the Euler characteristic of the complex projective plane is $3$.

i14 : assert (euler arrangement({}, ring A2) === 3)

See also

Ways to use this method: