Macaulay2 » Documentation
Packages » HyperplaneArrangements :: vee(Flat,Flat)
next | previous | forward | backward | up | index | toc

vee(Flat,Flat) -- compute the vee operation in the intersection lattice

Synopsis

Description

In the geometric lattice of flats, the vee (also known as the supremum or least upper bound) is the join operation. Equivalently, identifying flats with subspaces, this operation is the closure of the union.

The vee operation is commutative, associative, and idempotent.

i1 : A = typeA 6;
i2 : F = flat(A, {0, 1, 6, 15, 20})

o2 = {0, 1, 6, 15, 20}

o2 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i3 : G = flat(A, {0, 1, 2, 6, 7, 11})

o3 = {0, 1, 2, 6, 7, 11}

o3 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i4 : H = flat(A, {0, 1, 2, 3, 6, 7, 8, 11, 12, 15})

o4 = {0, 1, 2, 3, 6, 7, 8, 11, 12, 15}

o4 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i5 : F | G

o5 = {0, 1, 2, 3, 6, 7, 8, 11, 12, 15, 20}

o5 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i6 : G | H

o6 = {0, 1, 2, 3, 6, 7, 8, 11, 12, 15}

o6 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i7 : F | H

o7 = {0, 1, 2, 3, 6, 7, 8, 11, 12, 15, 20}

o7 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i8 : assert(vee(F, G) === F | G)
i9 : assert(F | G === G | F)
i10 : assert((F | G) | H === F | (G | H))
i11 : assert(G | G === G)

The rank function is also semimodular.

i12 : assert(rank F + rank G >= rank(F ^ G) + rank(F | G))
i13 : assert(rank F + rank H >= rank(F ^ H) + rank(F | H))
i14 : assert(rank H + rank G >= rank(H ^ G) + rank(H | G))

See also

Ways to use this method: