Macaulay2 » Documentation
Packages » MultiprojectiveVarieties :: image(MultirationalMap)
next | previous | forward | backward | up | index | toc

image(MultirationalMap) -- image of a multi-rational map

Synopsis

Description

Note that, instead, the image of a standard rational map is the defining ideal of the image (this is done mainly for efficiency reasons).

i1 : ZZ/65521[x_0..x_4];
i2 : f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2, x_0*x_4, x_1*x_4, x_2*x_4, x_3*x_4, x_4^2};

o2 : RationalMap (quadratic rational map from PP^4 to PP^7)
i3 : g = rationalMap {-x_3^2+x_2*x_4, 2*x_2*x_3-2*x_1*x_4, -3*x_2^2+2*x_1*x_3+x_0*x_4, 2*x_1*x_2-2*x_0*x_3, -x_1^2+x_0*x_2};

o3 : RationalMap (quadratic rational map from PP^4 to PP^4)
i4 : Phi = rationalMap {f,g};

o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4)
i5 : time Z = image Phi;
 -- used 0.190808s (cpu); 0.190882s (thread); 0s (gc)

o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
i6 : dim Z, degree Z, degrees Z

o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)})

o6 : Sequence

Alternatively, the calculation can be performed using the Segre embedding as follows:

i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4");
 -- used 14.4356s (cpu); 4.56955s (thread); 0s (gc)

o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
i8 : assert(Z == Z')

See also

Ways to use this method: