Macaulay2 » Documentation
Packages » NoetherianOperators :: getIdealFromNoetherianOperators
next | previous | forward | backward | up | index | toc

getIdealFromNoetherianOperators -- Computes a primary ideal corresponding to a list of Noetherian operators and a prime ideal

Synopsis

Description

This method contains an implementation of Algorithm 3.9 in the paper Primary ideals and their differential equations. This method can be seen as the reverse operation of computing a set of Noetherian operators for a primary ideal.

Let $R$ be a polynomial ring $R = K[x_1,\ldots,x_n]$ over a field $K$ of characteristic zero. Consider the Weyl algebra $D = R<dx_1,\ldots,dx_n>$ and a list of differential operators $L = \{L_1,\ldots,L_m\} \,\subset\, D$. Denote by $\mathcal{E} \,\subset\, D$ the $R$-bisubmodule of $D$ that is generated by $L_1,\ldots,L_m$. For a given prime ideal $P \,\subset\, R$, this method computes the $P$-primary ideal given as $$ Q = \{ f \,\in\, R\, \mid\, \delta\, \bullet\, f\, \in P, \ \forall \delta \in \mathcal{E} \}. $$

Next, we provide several examples to show the interplay between computing a set of Noetherian operators and then recovering the original ideal.

The first example shows an ideal that can be described with two different sets of Noetherian operators (this example appeared in Example 7.8 of the paper Primary ideals and their differential equations).

i1 : R = QQ[x_1,x_2,x_3,x_4]

o1 = R

o1 : PolynomialRing
i2 : MM = matrix {{x_3,x_1,x_2},{x_1,x_2,x_4}}

o2 = | x_3 x_1 x_2 |
     | x_1 x_2 x_4 |

             2      3
o2 : Matrix R  <-- R
i3 : P = minors(2,MM)

               2                           2
o3 = ideal (- x  + x x , - x x  + x x , - x  + x x )
               1    2 3     1 2    3 4     2    1 4

o3 : Ideal of R
i4 : M = ideal{x_1^2,x_2^2,x_3^2,x_4^2}

             2   2   2   2
o4 = ideal (x , x , x , x )
             1   2   3   4

o4 : Ideal of R
i5 : Q = joinIdeals(P,M);

o5 : Ideal of R
i6 : L1 = noetherianOperators(Q) -- A set of Noetherian operators

o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, |
     ------------------------------------------------------------------------
     dx_1^3 |, | dx_1^2dx_2 |, | dx_1dx_2^2 |, | dx_2^3 |, |
     ------------------------------------------------------------------------
     2x_3x_4dx_1^3dx_2+5x_1x_4dx_1^2dx_2^2+2x_2x_4dx_1dx_2^3 |}

o6 : List
i7 : Q1 = getIdealFromNoetherianOperators(L1, P);

o7 : Ideal of R
i8 : Q == Q1

o8 = true
i9 : L2 = noetherianOperators(M) -- Another set of Noetherian operators

o9 = {| 1 |, | dx_1 |, | dx_2 |, | dx_3 |, | dx_4 |, | dx_1dx_2 |, | dx_1dx_3
     ------------------------------------------------------------------------
     |, | dx_1dx_4 |, | dx_2dx_3 |, | dx_2dx_4 |, | dx_3dx_4 |, |
     ------------------------------------------------------------------------
     dx_1dx_2dx_3 |, | dx_1dx_2dx_4 |, | dx_1dx_3dx_4 |, | dx_2dx_3dx_4 |, |
     ------------------------------------------------------------------------
     dx_1dx_2dx_3dx_4 |}

o9 : List
i10 : Q2 = getIdealFromNoetherianOperators(L2, P);

o10 : Ideal of R
i11 : Q == Q2

o11 = true

The following example was given as the running example in the Introduction of the paper Primary ideals and their differential equations.

i12 : Q = ideal(3*x_1^2*x_2^2-x_2^3*x_3-x_1^3*x_4-3*x_1*x_2*x_3*x_4+2*x_3^2*x_4^2,3*x_1^3*x_2*x_4-3*x_1*x_2^2*x_3*x_4-3*x_1^2*x_3*x_4^2+3*x_2*x_3^2*x_4^2+2*x_2^3-2*x_3*x_4^2,3*x_2^4*x_3-6*x_1*x_2^2*x_3*x_4+3*x_1^2*x_3*x_4^2+x_2^3-x_3*x_4^2,4*x_1*x_2^3*x_3+x_1^4*x_4-6*x_1^2*x_2*x_3*x_4-3*x_2^2*x_3^2*x_4+4*x_1*x_3^2*x_4^2,x_2^5-x_1*x_2^3*x_4-x_2^2*x_3*x_4^2+x_1*x_3*x_4^3,x_1*x_2^4-x_2^3*x_3*x_4-x_1*x_2*x_3*x_4^2+x_3^2*x_4^3,x_1^4*x_2-x_2^3*x_3^2-2*x_1^3*x_3*x_4+2*x_1*x_2*x_3^2*x_4,x_1^5-4*x_1^3*x_2*x_3+3*x_1*x_2^2*x_3^2+2*x_1^2*x_3^2*x_4-2*x_2*x_3^3*x_4,3*x_1^4*x_3*x_4-6*x_1^2*x_2*x_3^2*x_4+3*x_2^2*x_3^3*x_4+2*x_1^3*x_2+6*x_1*x_2^2*x_3-6*x_1^2*x_3*x_4-2*x_2*x_3^2*x_4,4*x_2^3*x_3^3+4*x_1^3*x_3^2*x_4-12*x_1*x_2*x_3^3*x_4+4*x_3^4*x_4^2-x_1^4+6*x_1^2*x_2*x_3+3*x_2^2*x_3^2-8*x_1*x_3^2*x_4)

               2 2    3      3                   2 2    3           2      
o12 = ideal (3x x  - x x  - x x  - 3x x x x  + 2x x , 3x x x  - 3x x x x  -
               1 2    2 3    1 4     1 2 3 4     3 4    1 2 4     1 2 3 4  
      -----------------------------------------------------------------------
        2   2       2 2     3       2    4         2         2   2    3  
      3x x x  + 3x x x  + 2x  - 2x x , 3x x  - 6x x x x  + 3x x x  + x  -
        1 3 4     2 3 4     2     3 4    2 3     1 2 3 4     1 3 4    2  
      -----------------------------------------------------------------------
         2      3      4       2           2 2         2 2   5      3    
      x x , 4x x x  + x x  - 6x x x x  - 3x x x  + 4x x x , x  - x x x  -
       3 4    1 2 3    1 4     1 2 3 4     2 3 4     1 3 4   2    1 2 4  
      -----------------------------------------------------------------------
       2   2        3     4    3              2    2 3   4      3 2     3    
      x x x  + x x x , x x  - x x x  - x x x x  + x x , x x  - x x  - 2x x x 
       2 3 4    1 3 4   1 2    2 3 4    1 2 3 4    3 4   1 2    2 3     1 3 4
      -----------------------------------------------------------------------
              2     5     3           2 2     2 2         3      4      
      + 2x x x x , x  - 4x x x  + 3x x x  + 2x x x  - 2x x x , 3x x x  -
          1 2 3 4   1     1 2 3     1 2 3     1 3 4     2 3 4    1 3 4  
      -----------------------------------------------------------------------
        2   2       2 3       3         2       2           2      3 3  
      6x x x x  + 3x x x  + 2x x  + 6x x x  - 6x x x  - 2x x x , 4x x  +
        1 2 3 4     2 3 4     1 2     1 2 3     1 3 4     2 3 4    2 3  
      -----------------------------------------------------------------------
        3 2            3       4 2    4     2         2 2       2
      4x x x  - 12x x x x  + 4x x  - x  + 6x x x  + 3x x  - 8x x x )
        1 3 4      1 2 3 4     3 4    1     1 2 3     2 3     1 3 4

o12 : Ideal of R
i13 : L = noetherianOperators(Q)

o13 = {| 1 |, | dx_1 |, | dx_1^2-2x_2dx_2 |}

o13 : List
i14 : Q' = getIdealFromNoetherianOperators(L, P);

o14 : Ideal of R
i15 : Q == Q'

o15 = true

The next example was given by Palamodov to show that there exist primary ideals that cannot be described by using differential operators with constant coefficients.

i16 : R = QQ[x_1, x_2, x_3]

o16 = R

o16 : PolynomialRing
i17 : Q = ideal(x_1^2, x_2^2, x_1-x_2*x_3)

              2   2
o17 = ideal (x , x , - x x  + x )
              1   2     2 3    1

o17 : Ideal of R
i18 : L = noetherianOperators(Q)

o18 = {| 1 |, | x_3dx_1+dx_2 |}

o18 : List
i19 : Q' = getIdealFromNoetherianOperators(L,radical Q)

                         2         2
o19 = ideal (x x  - x , x , x x , x )
              2 3    1   2   1 2   1

o19 : Ideal of R
i20 : Q == Q'

o20 = true

For the last example we consider an ideal defined by using the join construction.

i21 : R = QQ[x_1..x_9]

o21 = R

o21 : PolynomialRing
i22 : MM = genericMatrix(R, 3, 3)

o22 = | x_1 x_4 x_7 |
      | x_2 x_5 x_8 |
      | x_3 x_6 x_9 |

              3      3
o22 : Matrix R  <-- R
i23 : P = minors(2, MM)

o23 = ideal (- x x  + x x , - x x  + x x , - x x  + x x , - x x  + x x , -
                2 4    1 5     3 4    1 6     3 5    2 6     2 7    1 8   
      -----------------------------------------------------------------------
      x x  + x x , - x x  + x x , - x x  + x x , - x x  + x x , - x x  +
       3 7    1 9     3 8    2 9     5 7    4 8     6 7    4 9     6 8  
      -----------------------------------------------------------------------
      x x )
       5 9

o23 : Ideal of R
i24 : M = ideal(x_1^2, x_5^2, x_9^2, x_2, x_3, x_4, x_6, x_7, x_8)

              2   2   2
o24 = ideal (x , x , x , x , x , x , x , x , x )
              1   5   9   2   3   4   6   7   8

o24 : Ideal of R
i25 : Q = joinIdeals(P, M)

                               2 2                2 2                        
o25 = ideal (x x x  - x x x , x x  - 2x x x x  + x x , x x x x  - 2x x x x  +
              2 6 7    3 4 8   3 8     2 3 8 9    2 9   3 6 7 8     3 4 8 9  
      -----------------------------------------------------------------------
           2   2 2                2 2   2 2                2 2   2 2  
      x x x , x x  - 2x x x x  + x x , x x  - 2x x x x  + x x , x x  -
       2 4 9   6 7     4 6 7 9    4 9   5 7     4 5 7 8    4 8   2 7  
      -----------------------------------------------------------------------
                   2 2     2                                                 
      2x x x x  + x x , x x x  - 2x x x x  + x x x x , x x x x  - 2x x x x  +
        1 2 7 8    1 8   3 5 7     3 4 5 8    2 4 6 8   2 3 4 7     1 3 4 8  
      -----------------------------------------------------------------------
       2       2 2                2 2   2 2                2 2   2   2  
      x x x , x x  - 2x x x x  + x x , x x  - 2x x x x  + x x , x x x  -
       1 6 8   3 5     2 3 5 6    2 6   3 4     1 3 4 6    1 6   6 7 8  
      -----------------------------------------------------------------------
            2      2   2           2     2 2       2          2 2  
      2x x x x  - x x x  + 2x x x x , x x x  - 2x x x x  - x x x  +
        4 6 8 9    5 7 9     4 5 8 9   3 6 8     2 6 8 9    3 5 9  
      -----------------------------------------------------------------------
              2          2      2 2       2          2 2   2 2           2  
      2x x x x , 2x x x x  - x x x  - 2x x x x  + x x x , x x x  - 2x x x x 
        2 5 6 9    3 5 6 8    2 6 8     3 5 8 9    2 5 9   3 7 8     2 3 7 9
      -----------------------------------------------------------------------
                2    2   2      2          2 2     2            2 2   2   2  
      + 2x x x x  - x x x , 2x x x x  - x x x  - 2x x x x  + x x x , x x x  -
          1 2 7 9    1 8 9    5 6 7 8    4 6 8     5 6 7 9    4 5 9   3 6 7  
      -----------------------------------------------------------------------
        2                 2    2   2   2   2           2     2        
      2x x x x  + 2x x x x  - x x x , x x x  - 2x x x x  + 2x x x x  -
        3 4 7 9     1 3 4 9    1 6 9   3 4 7     1 3 6 7     1 6 7 9  
      -----------------------------------------------------------------------
       2   2     2 2       2         2          2   2    2               2  
      x x x , x x x  - 2x x x x  + 2x x x x  - x x x , 2x x x x  - 2x x x x 
       1 4 9   2 3 7     1 3 7 8     1 3 8 9    1 2 9    2 4 5 7     1 2 5 7
      -----------------------------------------------------------------------
         2 2      2 2     2 2      2 2           2       2              2    
      - x x x  + x x x , x x x  - x x x  - 2x x x x  + 2x x x x , 2x x x x  -
         2 4 8    1 5 8   2 4 7    1 5 7     1 2 4 8     1 4 5 8    2 3 4 5  
      -----------------------------------------------------------------------
              2    2 2      2 2     2   2    2   2       2         2       
      2x x x x  - x x x  + x x x , x x x  - x x x  - 2x x x x  + 2x x x x ,
        1 3 4 5    2 4 6    1 5 6   2 3 4    1 3 5     1 2 4 6     1 2 5 6 
      -----------------------------------------------------------------------
       3 3       2 2       2     2    3 3     2 3     2                   2  
      x x  - 3x x x x  + 3x x x x  - x x , x x x  + 2x x x x x  - 4x x x x x 
       6 8     5 6 8 9     5 6 8 9    5 9   4 6 8     5 6 7 8 9     4 5 6 8 9
      -----------------------------------------------------------------------
          3   2       2   2         3           2        2   2             2 
      - 2x x x  + 3x x x x , x x x x  - 2x x x x x  - x x x x  + 2x x x x x ,
          5 7 9     4 5 8 9   3 4 6 8     2 4 6 8 9    2 5 7 9     2 4 5 8 9 
      -----------------------------------------------------------------------
         3 2       2               2           3 2       2   2            2  
      x x x  + 2x x x x x  - 4x x x x x  - 2x x x  + 3x x x x , 2x x x x x  -
       2 6 8     3 5 6 8 9     2 5 6 8 9     3 5 9     2 5 6 9    1 3 4 6 8  
      -----------------------------------------------------------------------
       2 2 2         2        2 2 2    2            2 2 2         2      
      x x x  - 2x x x x x  + x x x , 2x x x x x  + x x x  + 2x x x x x  -
       1 6 8     2 3 4 8 9    2 4 9    3 4 5 7 8    1 6 8     2 3 4 8 9  
      -----------------------------------------------------------------------
                                        2                     2    2 2 2 
      8x x x x x x  - 4x x x x x x  + 4x x x x x  + 4x x x x x  - x x x ,
        1 3 4 5 8 9     1 2 4 6 8 9     1 5 6 8 9     1 2 4 5 9    1 5 9 
      -----------------------------------------------------------------------
       3             2           2                     2    2     2   3 3  
      x x x x  - 4x x x x x  + 2x x x x x  + 2x x x x x  - x x x x , x x  -
       3 4 7 8     1 3 4 8 9     1 3 6 8 9     1 2 3 4 9    1 2 6 9   3 7  
      -----------------------------------------------------------------------
          2 2       2     2    3 3   2 2            3           2      
      3x x x x  + 3x x x x  - x x , x x x x  - x x x x  + 2x x x x x  -
        1 3 7 9     1 3 7 9    1 9   1 5 6 7    2 3 4 8     1 2 4 6 8  
      -----------------------------------------------------------------------
        2                  2       2 3      2 3           2         2   2   
      2x x x x x , 2x x x x x  - 2x x x  + x x x  - 4x x x x x  + 3x x x x ,
        1 4 5 6 8    1 2 4 5 7     1 5 7    2 4 8     1 2 4 5 8     1 4 5 8 
      -----------------------------------------------------------------------
                2     2   3    3 2         2           2   2     3 3  
      2x x x x x  - 2x x x  + x x x  - 4x x x x x  + 3x x x x , x x  -
        1 2 3 4 5     1 3 5    2 4 6     1 2 4 5 6     1 2 5 6   2 4  
      -----------------------------------------------------------------------
          2 2       2     2    3 3   2 2 3         2 2               2    
      3x x x x  + 3x x x x  - x x , x x x  + 2x x x x x  - 4x x x x x x  -
        1 2 4 5     1 2 4 5    1 5   1 6 8     2 3 4 8 9     1 2 4 6 8 9  
      -----------------------------------------------------------------------
            2   2    2 2   2               2   2     3     2     2    
      2x x x x x  - x x x x  + 4x x x x x x , x x x x  - 2x x x x x  -
        1 2 5 7 9    2 4 8 9     1 2 4 5 8 9   1 3 6 8     1 2 6 8 9  
      -----------------------------------------------------------------------
       3     2       2     2   2 3 2         2                 2      
      x x x x  + 2x x x x x , x x x  + 2x x x x x x  - 4x x x x x x  -
       2 4 7 9     1 2 4 8 9   1 6 8     2 3 4 6 8 9     1 2 4 6 8 9  
      -----------------------------------------------------------------------
              2 2    2 2   2               2         2 2    2   2 2  
      2x x x x x  - x x x x  + 4x x x x x x , x x x x x  - x x x x  -
        1 3 4 5 9    2 4 6 9     1 2 4 5 6 9   1 2 4 6 8    1 5 6 8  
      -----------------------------------------------------------------------
       2 2          2 2          2 2   2          2 2        2   2    2   2 2
      x x x x x  + x x x x x  + x x x x  - x x x x x , 2x x x x x  - x x x x 
       2 4 6 8 9    1 5 6 8 9    2 4 5 9    1 2 4 5 9    2 3 4 6 8    1 5 6 8
      -----------------------------------------------------------------------
                2         2 2                            2 2        
      - 2x x x x x x  - 5x x x x x  + 4x x x x x x x  + x x x x x  +
          1 3 4 5 8 9     2 4 6 8 9     1 2 4 5 6 8 9    1 5 6 8 9  
      -----------------------------------------------------------------------
        2 2   2           2 2    2 3 2   2 3         2   2            3 2  
      4x x x x  - 4x x x x x  + x x x , x x x x  - 2x x x x x  - x x x x  +
        2 4 5 9     1 2 4 5 9    1 5 9   1 6 7 8     1 4 6 8 9    2 3 4 9  
      -----------------------------------------------------------------------
            2   2   2 2 2 2    2 2 2 2     2 2                   2        
      2x x x x x , x x x x  - x x x x  - 4x x x x x x  + 4x x x x x x x  +
        1 2 4 6 9   2 4 6 8    1 5 6 8     2 4 5 6 8 9     1 2 4 5 6 8 9  
      -----------------------------------------------------------------------
        2 2 2 2           3 2    2 4 2
      3x x x x  - 4x x x x x  + x x x )
        2 4 5 9     1 2 4 5 9    1 5 9

o25 : Ideal of R
i26 : L = noetherianOperators(Q)

o26 = {| 1 |, | dx_5 |, | x_6dx_4+x_9dx_7 |, | x_4dx_4-x_8dx_8 |, |
      -----------------------------------------------------------------------
      x_6dx_4dx_5+x_9dx_5dx_7 |, | x_4dx_4dx_5-x_8dx_5dx_8 |, |
      -----------------------------------------------------------------------
      x_4x_5x_9dx_4dx_7+x_4x_8x_9dx_7^2+x_5^2x_9dx_4dx_8+x_5x_8x_9dx_7dx_8-x_
      -----------------------------------------------------------------------
      5x_6dx_4 |, | x_4x_5x_9dx_4dx_5dx_7+x_4x_8x_9dx_5dx_7^2+x_5^2x_9dx_4dx_
      -----------------------------------------------------------------------
      5dx_8+x_5x_8x_9dx_5dx_7dx_8-x_5x_6dx_4dx_5 |}

o26 : List
i27 : Q' = getIdealFromNoetherianOperators(L, radical Q)

                               2 2                2 2                        
o27 = ideal (x x x  - x x x , x x  - 2x x x x  + x x , x x x x  - 2x x x x  +
              2 6 7    3 4 8   3 8     2 3 8 9    2 9   3 6 7 8     3 4 8 9  
      -----------------------------------------------------------------------
           2   2 2                2 2   2 2                2 2   2 2  
      x x x , x x  - 2x x x x  + x x , x x  - 2x x x x  + x x , x x  -
       2 4 9   6 7     4 6 7 9    4 9   5 7     4 5 7 8    4 8   2 7  
      -----------------------------------------------------------------------
                   2 2     2                                                 
      2x x x x  + x x , x x x  - 2x x x x  + x x x x , x x x x  - 2x x x x  +
        1 2 7 8    1 8   3 5 7     3 4 5 8    2 4 6 8   2 3 4 7     1 3 4 8  
      -----------------------------------------------------------------------
       2       2 2                2 2   2 2                2 2   2   2  
      x x x , x x  - 2x x x x  + x x , x x  - 2x x x x  + x x , x x x  -
       1 6 8   3 5     2 3 5 6    2 6   3 4     1 3 4 6    1 6   6 7 8  
      -----------------------------------------------------------------------
            2      2   2           2     2 2       2          2 2  
      2x x x x  - x x x  + 2x x x x , x x x  - 2x x x x  - x x x  +
        4 6 8 9    5 7 9     4 5 8 9   3 6 8     2 6 8 9    3 5 9  
      -----------------------------------------------------------------------
              2          2      2 2       2          2 2   2 2           2  
      2x x x x , 2x x x x  - x x x  - 2x x x x  + x x x , x x x  - 2x x x x 
        2 5 6 9    3 5 6 8    2 6 8     3 5 8 9    2 5 9   3 7 8     2 3 7 9
      -----------------------------------------------------------------------
                2    2   2      2          2 2     2            2 2   2   2  
      + 2x x x x  - x x x , 2x x x x  - x x x  - 2x x x x  + x x x , x x x  -
          1 2 7 9    1 8 9    5 6 7 8    4 6 8     5 6 7 9    4 5 9   3 6 7  
      -----------------------------------------------------------------------
        2                 2    2   2   2   2           2     2        
      2x x x x  + 2x x x x  - x x x , x x x  - 2x x x x  + 2x x x x  -
        3 4 7 9     1 3 4 9    1 6 9   3 4 7     1 3 6 7     1 6 7 9  
      -----------------------------------------------------------------------
       2   2     2 2       2         2          2   2    2               2  
      x x x , x x x  - 2x x x x  + 2x x x x  - x x x , 2x x x x  - 2x x x x 
       1 4 9   2 3 7     1 3 7 8     1 3 8 9    1 2 9    2 4 5 7     1 2 5 7
      -----------------------------------------------------------------------
         2 2      2 2     2 2      2 2           2       2              2    
      - x x x  + x x x , x x x  - x x x  - 2x x x x  + 2x x x x , 2x x x x  -
         2 4 8    1 5 8   2 4 7    1 5 7     1 2 4 8     1 4 5 8    2 3 4 5  
      -----------------------------------------------------------------------
              2    2 2      2 2     2   2    2   2       2         2       
      2x x x x  - x x x  + x x x , x x x  - x x x  - 2x x x x  + 2x x x x ,
        1 3 4 5    2 4 6    1 5 6   2 3 4    1 3 5     1 2 4 6     1 2 5 6 
      -----------------------------------------------------------------------
       3 3       2 2       2     2    3 3    2            2 2 2         2    
      x x  - 3x x x x  + 3x x x x  - x x , 2x x x x x  + x x x  + 2x x x x x 
       6 8     5 6 8 9     5 6 8 9    5 9    3 4 5 7 8    1 6 8     2 3 4 8 9
      -----------------------------------------------------------------------
                                          2                     2    2 2 2 
      - 8x x x x x x  - 4x x x x x x  + 4x x x x x  + 4x x x x x  - x x x ,
          1 3 4 5 8 9     1 2 4 6 8 9     1 5 6 8 9     1 2 4 5 9    1 5 9 
      -----------------------------------------------------------------------
       3 3       2 2       2     2    3 3   3 3       2 2       2     2  
      x x  - 3x x x x  + 3x x x x  - x x , x x  - 3x x x x  + 3x x x x  -
       3 7     1 3 7 9     1 3 7 9    1 9   2 4     1 2 4 5     1 2 4 5  
      -----------------------------------------------------------------------
       3 3
      x x )
       1 5

o27 : Ideal of R
i28 : Q == Q'

o28 = true

Ways to use getIdealFromNoetherianOperators :

For the programmer

The object getIdealFromNoetherianOperators is a method function.