Macaulay2 » Documentation
Packages » SimplicialComplexes :: SimplicialComplex * SimplicialComplex
next | previous | forward | backward | up | index | toc

SimplicialComplex * SimplicialComplex -- make the join for two abstract simplicial complexes

Synopsis

Description

The join of two simplicial complexes $\Delta$ and $\Gamma$ is a new simplicial complex whose faces are disjoint unions of a face in $\Delta$ and a face in $\Gamma$.

If $\Gamma$ is the simplicial complex consisting of a single vertex, then the join $\Delta \mathrel{*} \Gamma$ is the cone over $\Delta$. For example, the cone over a bow-tie complex.

i1 : S = QQ[a..e];
i2 : Δ = simplicialComplex {a*b*c, c*d*e}

o2 = simplicialComplex | cde abc |

o2 : SimplicialComplex
i3 : R = QQ[f];
i4 : Γ = simplicialComplex {f};
i5 : Δ' = Δ * Γ

o5 = simplicialComplex | cdef abcf |

o5 : SimplicialComplex
i6 : assert (dim Δ' === dim Δ + 1)

If $\Gamma$ is a $1$-sphere (consisting of two isolated vertices), then the join $\Delta \mathrel{*} \Gamma$ is the suspension of $\Delta$. For example, the octahedron is the suspension of a square.

i7 : S = QQ[a..d];
i8 : Δ = simplicialComplex {a*b, b*c, c*d, a*d}

o8 = simplicialComplex | cd ad bc ab |

o8 : SimplicialComplex
i9 : R = QQ[e,f];
i10 : Γ = simplicialComplex {e, f}

o10 = simplicialComplex | f e |

o10 : SimplicialComplex
i11 : Δ' = Δ * Γ

o11 = simplicialComplex | cdf cde adf ade bcf bce abf abe |

o11 : SimplicialComplex
i12 : assert (dim Δ' === dim Δ + 1)
i13 : assert (apply(2+dim Δ', i -> #faces(i-1,Δ')) == {1,6,12,8})

The join of a hexagon and a pentagon is a 3-sphere.

i14 : S = ZZ[a..f];
i15 : Δ = simplicialComplex {a*b, b*c, c*d, d*e, e*f, a*f}

o15 = simplicialComplex | ef af de cd bc ab |

o15 : SimplicialComplex
i16 : R = ZZ[g..k];
i17 : Γ = simplicialComplex {g*h, h*i, i*j, j*k, g*k}

o17 = simplicialComplex | jk gk ij hi gh |

o17 : SimplicialComplex
i18 : Δ' = Δ * Γ

o18 = simplicialComplex | efjk efgk efij efhi efgh afjk afgk afij afhi afgh dejk degk deij dehi degh cdjk cdgk cdij cdhi cdgh bcjk bcgk bcij bchi bcgh abjk abgk abij abhi abgh |

o18 : SimplicialComplex
i19 : prune HH Δ'

o19 = -1 : 0  

       0 : 0  

       1 : 0  

       2 : 0  

             1
       3 : ZZ

o19 : GradedModule
i20 : assert (dim Δ' === 3)

Caveat

When the variables in the ring of $\Delta$ and the ring of $\Gamma$ are not disjoint, names of vertices in the join may not be intelligible; the same name will be used for two distinct variables.

See also

Ways to use this method: