Macaulay2 » Documentation
Packages » SimplicialComplexes :: inducedSubcomplex(SimplicialComplex,List)
next | previous | forward | backward | up | index | toc

inducedSubcomplex(SimplicialComplex,List) -- make the induced simplicial complex on a subset of vertices

Synopsis

Description

Given a simplicial complex $\Delta$ and a subset $V$ of its vertices, the induced subcomplex is the abstract simplicial complexes consisting of all faces in $\Delta$ whose vertices are contained in $V$.

i1 : S = ZZ[x_0..x_3];
i2 : Δ = simplicialComplex{x_0*x_1*x_2, x_2*x_3, x_1*x_3}

o2 = simplicialComplex | x_2x_3 x_1x_3 x_0x_1x_2 |

o2 : SimplicialComplex
i3 : Γ = inducedSubcomplex(Δ, {x_1, x_2, x_3})

o3 = simplicialComplex | x_2x_3 x_1x_3 x_1x_2 |

o3 : SimplicialComplex
i4 : vertices Γ

o4 = {x , x , x }
       1   2   3

o4 : List
i5 : assert (isWellDefined Γ and set vertices Γ === set {x_1, x_2, x_3})
i6 : assert all (facets Γ, F -> member(F, faces(#support F - 1, Δ)))

As a special case, we can consider induced subcomplexes of the void and irrelevant complexes.

i7 : void = simplicialComplex monomialIdeal(1_S);
i8 : inducedSubcomplex(void, {})

o8 = simplicialComplex 0

o8 : SimplicialComplex
i9 : assert(void === inducedSubcomplex(void, {}))
i10 : irrelevant = simplicialComplex {1_S};
i11 : inducedSubcomplex(irrelevant, {})

o11 = simplicialComplex | 1 |

o11 : SimplicialComplex
i12 : assert(irrelevant === inducedSubcomplex(irrelevant, {}))

See also

Ways to use this method: