Macaulay2 » Documentation
Packages » SimplicialComplexes :: nonPiecewiseLinearSphereComplex(PolynomialRing)
next | previous | forward | backward | up | index | toc

nonPiecewiseLinearSphereComplex(PolynomialRing) -- make a non-piecewise-linear 5-sphere with 18 vertices

Synopsis

Description

A piecewise linear (PL) sphere is a manifold which is PL homeomorphic to the boundary of a simplex. All the spheres in dimensions less than or equal to 3 are PL, but there are non-PL spheres in dimensions larger than or equal to 5.

As described in Theorem 7 in Anders Björner and Frank H. Lutz's "Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere", Experimental Mathematics 9 (2000) 275–289, this method returns a non-PL 5-sphere constructed from the Björner–Lutz homology sphere by taking a double suspension.

i1 : S = ZZ/101[a..s];
i2 : Δ = nonPiecewiseLinearSphereComplex S;
i3 : matrix {facets Δ}

o3 = | dmopqr bmopqr glopqr dlopqr bgopqr fjmpqr djmpqr fimpqr bimpqr ehlpqr
     ------------------------------------------------------------------------
     dhlpqr eglpqr bikpqr aikpqr egkpqr bgkpqr aekpqr dhjpqr chjpqr cfjpqr
     ------------------------------------------------------------------------
     cfipqr acipqr aehpqr achpqr fjmoqr djmoqr fimoqr bimoqr ehloqr dhloqr
     ------------------------------------------------------------------------
     egloqr bikoqr aikoqr egkoqr bgkoqr aekoqr dhjoqr chjoqr cfjoqr cfioqr
     ------------------------------------------------------------------------
     acioqr aehoqr achoqr hkmopr dkmopr ahmopr abmopr gilopr cilopr cdlopr
     ------------------------------------------------------------------------
     fhkopr cfkopr cdkopr gijopr eijopr bgjopr aejopr abjopr efiopr cfiopr
     ------------------------------------------------------------------------
     efhopr aehopr klmnpr glmnpr hkmnpr ghmnpr iklnpr gilnpr hiknpr ghinpr
     ------------------------------------------------------------------------
     jklmpr fjlmpr eglmpr eflmpr djkmpr efimpr beimpr cghmpr achmpr cegmpr
     ------------------------------------------------------------------------
     bcempr abcmpr ajklpr aiklpr bfjlpr abjlpr acilpr efhlpr bfhlpr bdhlpr
     ------------------------------------------------------------------------
     bcdlpr abclpr dejkpr aejkpr bhikpr bfhkpr cfgkpr bfgkpr cegkpr cdekpr
     ------------------------------------------------------------------------
     ghijpr dhijpr deijpr cghjpr cfgjpr bfgjpr bdhipr bdeipr bcdepr klmnor
     ------------------------------------------------------------------------
     glmnor hkmnor ghmnor iklnor gilnor hiknor ghinor jklmor fjlmor eglmor
     ------------------------------------------------------------------------
     eflmor djkmor efimor beimor cghmor achmor cegmor bcemor abcmor ajklor
     ------------------------------------------------------------------------
     aiklor bfjlor abjlor acilor efhlor bfhlor bdhlor bcdlor abclor dejkor
     ------------------------------------------------------------------------
     aejkor bhikor bfhkor cfgkor bfgkor cegkor cdekor ghijor dhijor deijor
     ------------------------------------------------------------------------
     cghjor cfgjor bfgjor bdhior bdeior bcdeor hkmopq dkmopq ahmopq abmopq
     ------------------------------------------------------------------------
     gilopq cilopq cdlopq fhkopq cfkopq cdkopq gijopq eijopq bgjopq aejopq
     ------------------------------------------------------------------------
     abjopq efiopq cfiopq efhopq aehopq klmnpq glmnpq hkmnpq ghmnpq iklnpq
     ------------------------------------------------------------------------
     gilnpq hiknpq ghinpq jklmpq fjlmpq eglmpq eflmpq djkmpq efimpq beimpq
     ------------------------------------------------------------------------
     cghmpq achmpq cegmpq bcempq abcmpq ajklpq aiklpq bfjlpq abjlpq acilpq
     ------------------------------------------------------------------------
     efhlpq bfhlpq bdhlpq bcdlpq abclpq dejkpq aejkpq bhikpq bfhkpq cfgkpq
     ------------------------------------------------------------------------
     bfgkpq cegkpq cdekpq ghijpq dhijpq deijpq cghjpq cfgjpq bfgjpq bdhipq
     ------------------------------------------------------------------------
     bdeipq bcdepq klmnoq glmnoq hkmnoq ghmnoq iklnoq gilnoq hiknoq ghinoq
     ------------------------------------------------------------------------
     jklmoq fjlmoq eglmoq eflmoq djkmoq efimoq beimoq cghmoq achmoq cegmoq
     ------------------------------------------------------------------------
     bcemoq abcmoq ajkloq aikloq bfjloq abjloq aciloq efhloq bfhloq bdhloq
     ------------------------------------------------------------------------
     bcdloq abcloq dejkoq aejkoq bhikoq bfhkoq cfgkoq bfgkoq cegkoq cdekoq
     ------------------------------------------------------------------------
     ghijoq dhijoq deijoq cghjoq cfgjoq bfgjoq bdhioq bdeioq bcdeoq |

             1      269
o3 : Matrix S  <-- S
i4 : dim Δ

o4 = 5
i5 : fVector Δ

o5 = {1, 18, 141, 515, 930, 807, 269}

o5 : List
i6 : assert(dim Δ === 5 and isPure Δ)
i7 : assert(fVector Δ === {1,18,141,515,930,807,269})

This abstract simplicial complex is Cohen-Macaulay.

Our enumeration of the vertices follows the nonplsphere example in Masahiro Hachimori's simplicial complex library.

See also

Ways to use this method: