Macaulay2 » Documentation
Packages » SimplicialComplexes :: simplexComplex(ZZ,PolynomialRing)
next | previous | forward | backward | up | index | toc

simplexComplex(ZZ,PolynomialRing) -- make the simplex as an abstract simplicial complex

Synopsis

Description

A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. The $d$-simplex is the unique $d$-dimensional abstract simplicial complex having one facet. Furthermore, in the $d$-simplex, there are $\binom{d+1}{k+1}$ faces having dimension $k$.

i1 : S = ZZ[a..e];
i2 : irrelevant = simplexComplex (-1, S)

o2 = simplicialComplex | 1 |

o2 : SimplicialComplex
i3 : monomialIdeal irrelevant

o3 = monomialIdeal (a, b, c, d, e)

o3 : MonomialIdeal of S
i4 : dim irrelevant

o4 = -1
i5 : fVector irrelevant

o5 = {1}

o5 : List
i6 : assert(facets irrelevant === {1_S})
i7 : assert(dim irrelevant === -1 and fVector irrelevant === {1})
i8 : Δ0 = simplexComplex (0, S)

o8 = simplicialComplex | a |

o8 : SimplicialComplex
i9 : monomialIdeal Δ0

o9 = monomialIdeal (b, c, d, e)

o9 : MonomialIdeal of S
i10 : dim Δ0

o10 = 0
i11 : fVector Δ0

o11 = {1, 1}

o11 : List
i12 : assert(facets Δ0 === {a} and dim Δ0 === 0)
i13 : assert(fVector Δ0 == {1,1})
i14 : Δ1 = simplexComplex (1, S)

o14 = simplicialComplex | ab |

o14 : SimplicialComplex
i15 : monomialIdeal Δ1

o15 = monomialIdeal (c, d, e)

o15 : MonomialIdeal of S
i16 : dim Δ1

o16 = 1
i17 : fVector Δ1

o17 = {1, 2, 1}

o17 : List
i18 : assert(facets Δ1 === {a*b} and dim Δ1 === 1)
i19 : assert(fVector Δ1 === {1,2,1})
i20 : Δ2 = simplexComplex (2, S)

o20 = simplicialComplex | abc |

o20 : SimplicialComplex
i21 : monomialIdeal Δ2

o21 = monomialIdeal (d, e)

o21 : MonomialIdeal of S
i22 : dim Δ2

o22 = 2
i23 : fVector Δ2

o23 = {1, 3, 3, 1}

o23 : List
i24 : assert(facets Δ2 === {a*b*c} and dim Δ2 === 2)
i25 : assert(fVector Δ2 === {1,3,3,1})
i26 : Δ3 = simplexComplex (3, S)

o26 = simplicialComplex | abcd |

o26 : SimplicialComplex
i27 : monomialIdeal Δ3

o27 = monomialIdeal e

o27 : MonomialIdeal of S
i28 : dim Δ3

o28 = 3
i29 : fVector Δ3

o29 = {1, 4, 6, 4, 1}

o29 : List
i30 : assert(facets Δ3 === {a*b*c*d} and dim Δ3 === 3)
i31 : assert(fVector Δ3 === toList apply(-1..3, i -> binomial(3+1,i+1)))
i32 : Δ4 = simplexComplex (4, S)

o32 = simplicialComplex | abcde |

o32 : SimplicialComplex
i33 : monomialIdeal Δ4

o33 = monomialIdeal ()

o33 : MonomialIdeal of S
i34 : dim Δ4

o34 = 4
i35 : fVector Δ4

o35 = {1, 5, 10, 10, 5, 1}

o35 : List
i36 : assert(facets Δ4 === {a*b*c*d*e} and dim Δ4 === 4)
i37 : assert(fVector Δ4 === toList apply(-1..4, i -> binomial(4+1,i+1)))

The vertices in the $d$-simplex are the first $d+1$ variables in the given polynomial ring.

See also

Ways to use this method: