Macaulay2 » Documentation
Packages » SpecialFanoFourfolds :: parameterCount(SpecialCubicFourfold)
next | previous | forward | backward | up | index | toc

parameterCount(SpecialCubicFourfold) -- count of parameters in the moduli space of GM fourfolds

Synopsis

Description

This function implements a parameter count explained in the paper Unirationality of moduli spaces of special cubic fourfolds and K3 surfaces, by H. Nuer.

Below, we show that the closure of the locus of cubic fourfolds containing a Veronese surface has codimension at most one (hence exactly one) in the moduli space of cubic fourfolds. Then, by the computation of the discriminant, we deduce that the cubic fourfolds containing a Veronese surface describe the Hassett's divisor $\mathcal{C}_{20}$

i1 : K = ZZ/33331; V = PP_K^(2,2);

o2 : ProjectiveVariety, surface in PP^5
i3 : X = specialCubicFourfold V;

o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
i4 : time parameterCount(X,Verbose=>true)
 -- used 0.822841s (cpu); 0.550266s (thread); 0s (gc)
S: Veronese surface in PP^5
X: smooth cubic hypersurface in PP^5
(assumption: h^1(N_{S,P^5}) = 0)
h^0(N_{S,P^5}) = 27
h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
in particular, h^0(I_{S,P^5}(3)) is minimal
h^0(N_{S,P^5}) + 27 = 54
h^0(N_{S,X}) = 0
dim{[X] : S ⊂ X} >= 54
dim P(H^0(O_(P^5)(3))) = 55
codim{[X] : S ⊂ X} <= 1

o4 = (1, (28, 27, 0))

o4 : Sequence
i5 : discriminant X

o5 = 20

See also

Ways to use this method: