Macaulay2 » Documentation
Packages » Complexes :: nullHomotopy(ComplexMap)
next | previous | forward | backward | up | index | toc

nullHomotopy(ComplexMap) -- a map which is a candidate for being a null homotopy

Synopsis

Description

A map of chain complexes $f \colon C \to D$ is null-homotopic if there exists a map of chain complexes $h : C \to D$ of degree $\deg(f)+1$, such that we have the equality \[ f = \operatorname{dd}^D h + (-1)^{\deg(f)} h \operatorname{dd}^C. \] Given $f$, this method returns a map $h$ of chain complexes that will be a null-homotopy if one exists.

As a first example, we construct a map of chain complexes in which the null homotopy is given by the identity.

i1 : R = ZZ/101[x,y,z];
i2 : M = cokernel matrix{{x,y,z^2}, {y^2,z,x^2}}

o2 = cokernel | x  y z2 |
              | y2 z x2 |

                            2
o2 : R-module, quotient of R
i3 : C = complex {id_M}

o3 = M <-- M
            
     0     1

o3 : Complex
i4 : assert isNullHomotopic id_C
i5 : h = nullHomotopy id_C

o5 = 1 : cokernel | x  y z2 | <----------- cokernel | x  y z2 | : 0
                  | y2 z x2 |    | 1 0 |            | y2 z x2 |
                                 | 0 1 |

     2 : 0 <----- cokernel | x  y z2 | : 1
              0            | y2 z x2 |

o5 : ComplexMap
i6 : assert(h_0 == id_M)
i7 : assert isNullHomotopyOf(h, id_C)

A random map of chain complexes, arising as a boundary in the associated Hom complex, is automatically null homotopic.

i8 : C = (freeResolution M) ** R^1/ideal(x^3, z^3-x)

o8 = cokernel | x3 z3-x 0  0    | <-- cokernel {1} | x3 z3-x 0  0    0  0    | <-- cokernel {5} | x3 z3-x |
              | 0  0    x3 z3-x |              {2} | 0  0    x3 z3-x 0  0    |      
                                               {2} | 0  0    0  0    x3 z3-x |     2
     0                                 
                                      1

o8 : Complex
i9 : f = randomComplexMap(C, C[1], Boundary => true)

o9 = -1 : 0 <----- cokernel | x3 z3-x 0  0    | : -1
               0            | 0  0    x3 z3-x |

     0 : cokernel | x3 z3-x 0  0    | <-------------------------------------------------------------------------- cokernel {1} | x3 z3-x 0  0    0  0    | : 0
                  | 0  0    x3 z3-x |    | -5y+30z 30x2+19xy-10y2-29yz-32z2-22x -29xy+6y2-38yz-16z2+15x       |            {2} | 0  0    x3 z3-x 0  0    |
                                         | 36y+48z 21x2-22y2+19xz-10yz+7z2      -16x2-33y2-29xz-24yz-38z2+36x |            {2} | 0  0    0  0    x3 z3-x |

     1 : cokernel {1} | x3 z3-x 0  0    0  0    | <---------------------------------------------------------------------------------- cokernel {5} | x3 z3-x | : 1
                  {2} | 0  0    x3 z3-x 0  0    |    {1} | 24x2y2+19xy3-10y4+38x2yz-29y3z-19y2z2-19x2z+10xyz+29xz2-29x2-24xy-38xz |
                  {2} | 0  0    0  0    x3 z3-x |    {2} | 16x2y-8y3+8xz-16x                                                      |
                                                     {2} | -39x2y-22y3+22xz+39x                                                   |

o9 : ComplexMap
i10 : assert isNullHomotopic f
i11 : h = nullHomotopy f

o11 = 0 : cokernel | x3 z3-x 0  0    | <---------------------------- cokernel | x3 z3-x 0  0    | : -1
                   | 0  0    x3 z3-x |    | 24        -30        |            | 0  0    x3 z3-x |
                                          | 39x2yz-36 -39x2y2-29 |

      1 : cokernel {1} | x3 z3-x 0  0    0  0    | <--------------------------------------- cokernel {1} | x3 z3-x 0  0    0  0    | : 0
                   {2} | 0  0    x3 z3-x 0  0    |    {1} | 19 19x-10y-29z -29x-24y-38z |            {2} | 0  0    x3 z3-x 0  0    |
                   {2} | 0  0    0  0    x3 z3-x |    {2} | 0  -8          -16          |            {2} | 0  0    0  0    x3 z3-x |
                                                      {2} | 0  -22         -39x2y2+39   |

      2 : cokernel {5} | x3 z3-x | <----- cokernel {5} | x3 z3-x | : 1
                                      0

o11 : ComplexMap
i12 : assert isNullHomotopyOf(h, f)

When a map of chain complexes is not null-homotopic, this method nevertheless returns a map $h$ of chain complexes, having the correct source, target and degree, but cannot be a null homotopy.

i13 : g = randomComplexMap(C, C[1])

o13 = -1 : 0 <----- cokernel | x3 z3-x 0  0    | : -1
                0            | 0  0    x3 z3-x |

      0 : cokernel | x3 z3-x 0  0    | <---------------------------------------------------------------------------------- cokernel {1} | x3 z3-x 0  0    0  0    | : 0
                   | 0  0    x3 z3-x |    | 21x+34y+19z  -13x2-43xy-28y2-15xz-47yz+38z2 -47x2+47xy-16y2+19xz+7yz+15z2  |            {2} | 0  0    x3 z3-x 0  0    |
                                          | -47x-39y-18z 2x2+16xy+45y2+22xz-34yz-48z2   -23x2+39xy-17y2+43xz-11yz+48z2 |            {2} | 0  0    0  0    x3 z3-x |

      1 : cokernel {1} | x3 z3-x 0  0    0  0    | <---------------------------------------------------------------------- cokernel {5} | x3 z3-x | : 1
                   {2} | 0  0    x3 z3-x 0  0    |    {1} | 36x2y2-38xy3+11y4+35x2yz+33xy2z+46y3z+11x2z2+40xyz2-28y2z2 |
                   {2} | 0  0    0  0    x3 z3-x |    {2} | x2y+22xy2-7y3-3x2z-47xyz+2y2z-23xz2+29yz2                  |
                                                      {2} | -47x2y-37xy2+30y3+15x2z-13xyz-18y2z-10xz2+39yz2            |

o13 : ComplexMap
i14 : assert not isNullHomotopic g
i15 : h' = nullHomotopy g

o15 = 0 : cokernel | x3 z3-x 0  0    | <------------------------------------------------------------------------------------------------------------------------------------------------- cokernel | x3 z3-x 0  0    | : -1
                   | 0  0    x3 z3-x |    | -33xyz2-11xz2+15xz+50yz-33z2-12z-45                         40xyz2+46xz2+33yz+11z-2                                                       |            | 0  0    x3 z3-x |
                                          | 47x2yz+37xy2z-15x2z2+13xyz2-30xz2-23x2+47xz+37yz-38z2-43z-7 -47x2y2-37xy3+15x2yz-13xy2z-10xyz2+30xyz+39x2-47xy-37y2+15xz-13yz+23z2+30z+45 |

      1 : cokernel {1} | x3 z3-x 0  0    0  0    | <--------------------------------------------------------------------------------------------------------------------------------------------------- cokernel {1} | x3 z3-x 0  0    0  0    | : 0
                   {2} | 0  0    x3 z3-x 0  0    |    {1} | -33xyz2-11xz2+15xz+28 -38x+11y+46z 40xy2z2+37x2y2+13x2yz+10x2z2+46xyz2+47x2y-7x2z+33y2z+11xz2+40yz2-47x2+37xy-38xz+11yz+46z2+50y-35z+37 |            {2} | 0  0    x3 z3-x 0  0    |
                   {2} | 0  0    0  0    x3 z3-x |    {2} | 40xyz+46xz+39z        -7           -3x2yz-47xy2z-23xyz2-33x2y-7xyz-11x2-11xy-40y2-3xz-47yz-23z2-23x-46y-7z-12                           |            {2} | 0  0    0  0    x3 z3-x |
                                                      {2} | 0                     30           -47x2y2-37xy3+15x2yz-13xy2z-10xyz2+30xyz+39x2-47xy-37y2+15xz-13yz-10z2+30z                           |

      2 : cokernel {5} | x3 z3-x | <----- cokernel {5} | x3 z3-x | : 1
                                      0

o15 : ComplexMap
i16 : assert isWellDefined h'
i17 : assert(degree h' === degree g + 1)
i18 : assert not isNullHomotopyOf(h', g)

For developers: when the source of $f$ is a free complex, a procedure, that is often faster, is attempted. In the general case this method uses the Hom complex.

Caveat

The output is only a null homotopy when one exists.

See also

Ways to use this method: