Macaulay2 » Documentation
Packages » Complexes :: randomComplexMap(Complex,Complex)
next | previous | forward | backward | up | index | toc

randomComplexMap(Complex,Complex) -- a random map of chain complexes

Synopsis

Description

A random complex map $f : C \to D$ is obtained from a random element in the complex $Hom(C,D)$.

i1 : S = ZZ/101[a..c]

o1 = S

o1 : PolynomialRing
i2 : C = freeResolution coker matrix{{a*b, a*c, b*c}}

      1      3      2
o2 = S  <-- S  <-- S
                    
     0      1      2

o2 : Complex
i3 : D = freeResolution coker vars S

      1      3      3      1
o3 = S  <-- S  <-- S  <-- S
                           
     0      1      2      3

o3 : Complex
i4 : f = randomComplexMap(D,C)

          1              1
o4 = 0 : S  <---------- S  : 0
               | 24 |

          3                                                      3
     1 : S  <-------------------------------------------------- S  : 1
               {1} | -36a-30b-29c -29a-24b-38c -39a-18b-13c |
               {1} | 19a+19b-10c  -16a+39b+21c -43a-15b-28c |
               {1} | -29a-8b-22c  34a+19b-47c  -47a+38b+2c  |

          3                                         2
     2 : S  <------------------------------------- S  : 2
               {2} | 16a+22b+45c  7a+15b-23c   |
               {2} | -34a-48b-47c 39a+43b-17c  |
               {2} | 47a+19b-16c  -11a+48b+36c |

o4 : ComplexMap
i5 : assert isWellDefined f
i6 : assert not isCommutative f
i7 : assert not isNullHomotopic f

When the random element in the complex $Hom(C,D)$ lies in the kernel of the differential, the associated map of complexes commutes with the differential.

i8 : g = randomComplexMap(D,C, Cycle => true)

          1               1
o8 = 0 : S  <----------- S  : 0
               | -50 |

          3                                         3
     1 : S  <------------------------------------- S  : 1
               {1} | 40b-35c -46b+18c 28b+3c   |
               {1} | 11a-11c 46a+22c  -28a-37c |
               {1} | 35a+11b 33a-22b  -3a-13b  |

          3                                         2
     2 : S  <------------------------------------- S  : 2
               {2} | 46b-49c      -28a-46b+17c |
               {2} | -30b-35c     -3a+b        |
               {2} | -38a-22b-11c -47a+22b     |

o8 : ComplexMap
i9 : assert isWellDefined g
i10 : assert isCommutative g
i11 : assert isComplexMorphism g
i12 : assert not isNullHomotopic g

When the random element in the complex $Hom(C,D)$ lies in the image of the differential, the associated map of complexes is a null homotopy.

i13 : h = randomComplexMap(D,C, Boundary => true)

           1         1
o13 = 0 : S  <----- S  : 0
                0

           3                                         3
      1 : S  <------------------------------------- S  : 1
                {1} | 23b+7c  -29b+47c 37b+13c  |
                {1} | -23a-2c 29a-15c  -37a+10c |
                {1} | -7a+2b  -47a+15b -13a-10b |

           3                                       2
      2 : S  <----------------------------------- S  : 2
                {2} | 29b-48c    -37a-29b-18c |
                {2} | 24b+7c     -13a-36b     |
                {2} | 30a+15b-2c -28a-15b     |

o13 : ComplexMap
i14 : assert isWellDefined h
i15 : assert isCommutative h
i16 : assert isComplexMorphism h
i17 : assert isNullHomotopic h
i18 : nullHomotopy h

           3         1
o18 = 1 : S  <----- S  : 0
                0

           3                           3
      2 : S  <----------------------- S  : 1
                {2} | -23 29  -37 |
                {2} | -7  -47 -13 |
                {2} | 2   15  -10 |

           1                      2
      3 : S  <------------------ S  : 2
                {3} | 30 -18 |

o18 : ComplexMap

When the degree of the random element in the complex $Hom(C,D)$ is non-zero, the associated map of complexes has the same degree.

i19 : p = randomComplexMap(D, C, Cycle => true, Degree => -1)

                     1
o19 = -1 : 0 <----- S  : 0
                0

           1                                                                                                   3
      0 : S  <----------------------------------------------------------------------------------------------- S  : 1
                | 19a2-30ab+36b2+40ac+4bc-32c2 36a2+42ab-33b2+13ac-30bc+9c2 20a2+12ab-44b2-13ac-16bc+26c2 |

           3                                                                           2
      1 : S  <----------------------------------------------------------------------- S  : 2
                {1} | -10ab-31b2-20ac+31bc-39c2    -20a2+24ab-48b2-30ac-15bc+39c2 |
                {1} | -26a2-11ab+33b2+34bc+4c2     33ab-33b2-49ac-19bc+17c2       |
                {1} | 39a2+27ab+32b2-22ac-9bc-32c2 43a2-8ab-11b2+36ac-8bc         |

o19 : ComplexMap
i20 : assert isWellDefined p
i21 : assert isCommutative p
i22 : assert not isComplexMorphism p
i23 : assert(degree p === -1)

By default, the random element is constructed as a random linear combination of the basis elements in the appropriate degree of $Hom(C,D)$. Given an internal degree, the random element is constructed as maps of modules with this degree.

i24 : q = randomComplexMap(D, C, Boundary => true, InternalDegree => 2)

           1                                       1
o24 = 0 : S  <----------------------------------- S  : 0
                | -3a2+19ab+16b2-36ac+7bc-9c2 |

           3                                                                                                                                                                         3
      1 : S  <--------------------------------------------------------------------------------------------------------------------------------------------------------------------- S  : 1
                {1} | 32a2b-22ab2-40b3-25a2c-36abc-3b2c+2ac2-29bc2+49c3  47a2b-27ab2-37b3+36a2c+49abc-37b2c+18ac2-22bc2-30c3  -28a2b+18ab2-b3-10a2c+45abc+26b2c-30ac2+9bc2+13c3 |
                {1} | -35a3+41a2b-45ab2+6a2c-25abc+13b2c-31ac2-4bc2-30c3 -47a3+27a2b+37ab2+a2c-19abc+37b2c+42ac2-47bc2+49c3   28a3-18a2b+ab2+43a2c+21abc+8b2c-30ac2+bc2-30c3    |
                {1} | 25a3-6a2b+35ab2-13b3-2a2c-50abc+4b2c-49ac2+30bc2   -39a3-31a2b-29ab2-37b3+47a2c-13abc+47b2c+21ac2-49bc2 10a3+10a2b-28ab2+8b3+30a2c-15abc+6b2c-13ac2+21bc2 |

           3                                                                                                                                  2
      2 : S  <------------------------------------------------------------------------------------------------------------------------------ S  : 2
                {2} | -47a2b+27ab2+37b3-11a2c+9abc-33b2c-24ac2-11bc2+3c3        28a3+29a2b-26ab2-37b3+46a2c-21abc+50b2c-22ac2+49bc2-16c3 |
                {2} | 7a2b+21ab2+30b3-25a2c-30abc+30b2c+2ac2-2bc2+49c3          10a3+46a2b+44ab2+14b3+30a2c+31abc+30b2c-13ac2-14bc2      |
                {2} | -46a3+49a2b+42ab2-37b3-18a2c+23abc-41b2c-28ac2+48bc2-30c3 3a3-41a2b+23ab2+37b3+8a2c-11abc-47b2c+14ac2+49bc2        |

o24 : ComplexMap
i25 : assert all({0,1,2}, i -> degree q_i === {2})
i26 : assert isHomogeneous q
i27 : assert isWellDefined q
i28 : assert isCommutative q
i29 : assert isComplexMorphism q
i30 : source q === C

o30 = true
i31 : target q === D

o31 = true
i32 : assert isNullHomotopic q

See also

Ways to use this method: