Macaulay2 » Documentation
Packages » Complexes :: regularity(Complex)
next | previous | forward | backward | up | index | toc

regularity(Complex) -- compute the Castelnuovo-Mumford regularity

Synopsis

Description

Given a free complex $C$ over a standard graded polynomial ring, the regularity $r$ of $C$ is the smallest integer such that each basis element of $C_i$ has degree at most $i + r$.

i1 : R = ZZ/101[a..d];
i2 : I = ideal(b^2-a*c, b*c-a*d, c^2-b*d)

             2                    2
o2 = ideal (b  - a*c, b*c - a*d, c  - b*d)

o2 : Ideal of R
i3 : C = freeResolution(R^1/I)

      1      3      2
o3 = R  <-- R  <-- R
                    
     0      1      2

o3 : Complex
i4 : betti C

            0 1 2
o4 = total: 1 3 2
         0: 1 . .
         1: . 3 2

o4 : BettiTally
i5 : regularity C

o5 = 1
i6 : regularity I

o6 = 2
i7 : regularity (R^1/I)

o7 = 1
i8 : assert(regularity C === regularity(R^1/I))

The regularity is the label of the last row of the Betti table of $C$.

i9 : betti C

            0 1 2
o9 = total: 1 3 2
         0: 1 . .
         1: . 3 2

o9 : BettiTally
i10 : betti(C[3])

             -3 -2 -1
o10 = total:  1  3  2
          3:  1  .  .
          4:  .  3  2

o10 : BettiTally
i11 : regularity(C[3])

o11 = 4

Here is a slightly more complicated example.

i12 : J = ideal(a^3, b^3, c^3, d^3, (a+b+c+d)^3);

o12 : Ideal of R
i13 : FJ = freeResolution J

       1      5      17      20      7
o13 = R  <-- R  <-- R   <-- R   <-- R
                                     
      0      1      2       3       4

o13 : Complex
i14 : betti FJ

             0 1  2  3 4
o14 = total: 1 5 17 20 7
          0: 1 .  .  . .
          1: . .  .  . .
          2: . 5  .  . .
          3: . .  .  . .
          4: . . 16 10 1
          5: . .  1 10 6

o14 : BettiTally
i15 : regularity FJ

o15 = 5

Although Castelnuovo-Mumford regularity is defined in more general settings (e.g. toric varieties with multi-degrees) this method does not currently handle these extensions. Similarly, Castelnuovo-Mumford regularity can be defined for non-free complexes, but this method doesn't handle that case either.

See also

Ways to use this method: