Macaulay2 » Documentation
Packages » HyperplaneArrangements :: meet(Flat,Flat)
next | previous | forward | backward | up | index | toc

meet(Flat,Flat) -- compute the meet operation in the intersection lattice

Synopsis

Description

In the geometric lattice of flats, the meet (also known as the infimum or greatest lower bound) is the intersection of the flats. Equivalently, identifying flats with subspaces, this operation is the Minkowski sum of the subspaces.

The meet operation is commutative, associative, and idempotent.

i1 : A = typeA 6;
i2 : F = flat(A, {0, 1, 6, 15, 20})

o2 = {0, 1, 6, 15, 20}

o2 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i3 : G = flat(A, {0, 1, 2, 6, 7, 11})

o3 = {0, 1, 2, 6, 7, 11}

o3 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i4 : H = flat(A, {0, 1, 2, 3, 6, 7, 8, 11, 12, 15})

o4 = {0, 1, 2, 3, 6, 7, 8, 11, 12, 15}

o4 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i5 : F ^ G

o5 = {0, 1, 6}

o5 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i6 : G ^ H

o6 = {0, 1, 2, 6, 7, 11}

o6 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i7 : F ^ H

o7 = {0, 1, 6, 15}

o7 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   1    5   1    6   1    7   2    3   2    4   2    5   2    6   2    7   3    4   3    5   3    6   3    7   4    5   4    6   4    7   5    6   5    7   6    7
i8 : assert(meet(F, G) === F ^ G)
i9 : assert(F ^ G === G ^ F)
i10 : assert((F ^ G) ^ H === F ^ (G ^ H))
i11 : assert(G ^ G === G)

The rank function is also semimodular.

i12 : assert(rank F + rank G >= rank(F ^ G) + rank(F | G))
i13 : assert(rank F + rank H >= rank(F ^ H) + rank(F | H))
i14 : assert(rank H + rank G >= rank(H ^ G) + rank(H | G))

See also

Ways to use this method: