Macaulay2 » Documentation
Packages » HyperplaneArrangements :: ring(Arrangement)
next | previous | forward | backward | up | index | toc

ring(Arrangement) -- get the underlying ring of a hyperplane arrangement

Synopsis

Description

A hyperplane arrangement is defined by a list of affine-linear equations in a ring, either a polynomial ring or the quotient of polynomial ring by linear equations. This methods returns this ring.

Probably the best-known hyperplane arrangement is the braid arrangement consisting of all the diagonal hyperplanes. We illustrate two constructions of this hyperplane arrangement in $4$-space, using different polynomial rings.

i1 : S = ZZ[w,x,y,z];
i2 : A = arrangement(matrix{{1,1,1,0,0,0},{-1,0,0,1,1,0},{0,-1,0,-1,0,1},{0,0,-1,0,-1,-1}}, S)

o2 = {w - x, w - y, w - z, x - y, x - z, y - z}

o2 : Hyperplane Arrangement 
i3 : ring A

o3 = S

o3 : PolynomialRing
i4 : assert(ring A === S)
i5 : S' = ZZ/101[w,x,y,z];
i6 : A' = typeA(3, S')

o6 = {w - x, w - y, w - z, x - y, x - z, y - z}

o6 : Hyperplane Arrangement 
i7 : ring A'

o7 = S'

o7 : PolynomialRing
i8 : assert(ring A' === S')
i9 : assert(A' =!= A)

Projecting onto an appropriate linear subspace, we obtain an essential arrangement, meaning that the rank of the arrangement is equal to the dimension of its ambient vector space. (See also makeEssential.)

i10 : R = S'/(w+x+y+z)

o10 = R

o10 : QuotientRing
i11 : A'' = sub(A, R) -- this changes the coordinate ring of the arrangement

o11 = {- 2x - y - z, - x - 2y - z, - x - y - 2z, x - y, x - z, y - z}

o11 : Hyperplane Arrangement 
i12 : ring A''

o12 = R

o12 : QuotientRing
i13 : assert(rank A'' == dim ring A'')

The trivial arrangement has no equations, so it is necessary to specify a coordinate ring.

i14 : trivial = arrangement({}, S)

o14 = {}

o14 : Hyperplane Arrangement 
i15 : assert(ring trivial === S)
i16 : trivial' = arrangement({},R)

o16 = {}

o16 : Hyperplane Arrangement 
i17 : assert(ring trivial' === R)

See also

Ways to use this method: