Macaulay2 » Documentation
Packages » HyperplaneArrangements :: makeEssential(CentralArrangement)
next | previous | forward | backward | up | index | toc

makeEssential(CentralArrangement) -- make an essential arrangement out of an arbitrary one

Synopsis

Description

A central arrangement is essential if the intersection of all of the hyperplanes equals the origin. If ${\mathcal A}$ is a hyperplane arrangement in an affine space $V$ and $L$ is the intersection of all of the hyperplanes, then the image of the hyperplanes of ${\mathcal A}$ in $V/L$ gives an equivalent essential arrangement.

Since this essentialization is defined over a subring of the underlying ring of ${\mathcal A}$, it cannot be implemented directly. Instead, the method chooses a splitting of the quotient $V\to V/L$ and returns an arrangement over a polynomial ring on a subset of the original variables.

If ${\mathcal A}$ is already essential, then the method returns the same arrangement.

Deleting a hyperplane from an essential arrangement yields an essential arrangement only if the hyperplane was not a coloop.

i1 : R = QQ[x, y, z];
i2 : A = arrangement{x, y, x-y, z}

o2 = {x, y, x - y, z}

o2 : Hyperplane Arrangement 
i3 : makeEssential A

o3 = {x, y, x - y, z}

o3 : Hyperplane Arrangement 
i4 : assert(A == makeEssential A)
i5 : A' = deletion(A, z)

o5 = {x, y, x - y}

o5 : Hyperplane Arrangement 
i6 : ring A'

o6 = R

o6 : PolynomialRing
i7 : makeEssential A'

o7 = {x + y, x, y}

o7 : Hyperplane Arrangement 
i8 : ring makeEssential A'

o8 = QQ[x..y]

o8 : PolynomialRing

Type-$A$ reflection arrangements are not essential.

i9 : A = typeA 3

o9 = {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
       1    2   1    3   1    4   2    3   2    4   3    4

o9 : Hyperplane Arrangement 
i10 : ring A

o10 = QQ[x ..x ]
          1   4

o10 : PolynomialRing
i11 : A' = makeEssential A

o11 = {x  - x , x  - x , x , x  - x , x , x }
        1    2   1    3   1   2    3   2   3

o11 : Hyperplane Arrangement 
i12 : ring A'

o12 = QQ[x ..x ]
          1   3

o12 : PolynomialRing

Type-$B$ reflection arrangements are essential.

i13 : B = typeB 3

o13 = {x , x  - x , x  + x , x  - x , x  + x , x , x  - x , x  + x , x }
        1   1    2   1    2   1    3   1    3   2   2    3   2    3   3

o13 : Hyperplane Arrangement 
i14 : assert(B == makeEssential B)

See also

Ways to use this method: