Macaulay2 » Documentation
Packages » NormalToricVarieties :: isFibration(ToricMap)
next | previous | forward | backward | up | index | toc

isFibration(ToricMap) -- whether a toric map is a fibration

Synopsis

Description

A proper morphism $f : X \to Y$ is a fibration if $f_*(OO_X) = OO_Y$. A proper toric map is a fibration if and only if the underlying map of lattices is a surjection. For more information, see Proposition 2.1 in deCataldo-Migliorini-Mustata, "The combinatorics and topology of proper toric maps" arXiv:1407.3497.

We illustrate this method on the projection from the first Hirzebruch surface to the projective line.

i1 : X = hirzebruchSurface 1;
i2 : Y = toricProjectiveSpace 1;
i3 : f = map(Y, X, matrix{{1 ,0}})

o3 = | 1 0 |

o3 : ToricMap Y <--- X
i4 : isFibration f

o4 = true
i5 : assert (isWellDefined f and isFibration f)

Here is an example of a proper map that is not a fibration.

i6 : Z = weightedProjectiveSpace {1, 1, 2};
i7 : g = map(Z, X, matrix{{1, 0}, {0, -2}})

o7 = | 1 0  |
     | 0 -2 |

o7 : ToricMap Z <--- X
i8 : isFibration g

o8 = false
i9 : assert (isWellDefined g and isProper g and not isFibration g)

To avoid repeating a computation, the package caches the result in the CacheTable of the toric map.

See also

Ways to use this method: