Macaulay2 » Documentation
Packages » SimplicialComplexes :: coefficientRing(SimplicialComplex)
next | previous | forward | backward | up | index | toc

coefficientRing(SimplicialComplex) -- get the coefficient ring of the underlying polynomial ring

Synopsis

Description

In this package, an abstract simplicial complex is represented as squarefree monomial ideal in a polynomial ring. This method returns the coefficient ring of this polynomial ring.

We construct the boundary of the $4$-sphere using three different polynomial rings.

i1 : S = ZZ[a..e];
i2 : Δ = simplicialComplex {b*c*d*e, a*c*d*e, a*b*d*e, a*b*c*e, a*b*c*d}

o2 = simplicialComplex | bcde acde abde abce abcd |

o2 : SimplicialComplex
i3 : ring Δ

o3 = S

o3 : PolynomialRing
i4 : monomialIdeal Δ

o4 = monomialIdeal(a*b*c*d*e)

o4 : MonomialIdeal of S
i5 : coefficientRing Δ

o5 = ZZ

o5 : Ring
i6 : assert (ring Δ === S and coefficientRing Δ === ZZ and
         numgens ideal Δ === 1 )
i7 : R = QQ[a..e];
i8 : Γ = simplicialComplex {b*c*d*e, a*c*d*e, a*b*d*e, a*b*c*e, a*b*c*d}

o8 = simplicialComplex | bcde acde abde abce abcd |

o8 : SimplicialComplex
i9 : ring Γ

o9 = R

o9 : PolynomialRing
i10 : monomialIdeal Γ

o10 = monomialIdeal(a*b*c*d*e)

o10 : MonomialIdeal of R
i11 : coefficientRing Γ

o11 = QQ

o11 : Ring
i12 : assert (ring Γ === R and coefficientRing Γ === QQ and
          numgens ideal Γ === 1)
i13 : S' = ZZ/101[a..f];
i14 : Δ' = simplicialComplex {b*c*d*e, a*c*d*e, a*b*d*e, a*b*c*e, a*b*c*d}

o14 = simplicialComplex | bcde acde abde abce abcd |

o14 : SimplicialComplex
i15 : ring Δ'

o15 = S'

o15 : PolynomialRing
i16 : monomialIdeal Δ'

o16 = monomialIdeal (a*b*c*d*e, f)

o16 : MonomialIdeal of S'
i17 : coefficientRing Δ'

       ZZ
o17 = ---
      101

o17 : QuotientRing
i18 : assert (ring Δ' === S' and coefficientRing Δ' === ZZ/101 and
          numgens ideal Δ' === 2)

The Stanley–Reisner ideal is part of the defining data of an abstract simplicial complex, so this method does no computation.

Although an abstract simplicial complex can be represented by a Stanley–Reisner ideal in any polynomial ring with a sufficiently large number of variables, some operations in this package do depend of the choice of the polynomial ring (or its coefficient ring). For example, the chain complex of an abstract simplicial complex is, by default, constructed over the coefficient ring of its polynomial ring, and the dual of a simplicial complex (or monomial ideal) is dependent on the number of variables in the polynomial ideal.

i19 : C = chainComplex Δ

        1       5       10       10       5
o19 = ZZ  <-- ZZ  <-- ZZ   <-- ZZ   <-- ZZ
                                         
      -1      0       1        2        3

o19 : ChainComplex
i20 : D = chainComplex Γ

        1       5       10       10       5
o20 = QQ  <-- QQ  <-- QQ   <-- QQ   <-- QQ
                                         
      -1      0       1        2        3

o20 : ChainComplex
i21 : C' = chainComplex Δ'

        ZZ 1       ZZ 5       ZZ 10       ZZ 10       ZZ 5
o21 = (---)  <-- (---)  <-- (---)   <-- (---)   <-- (---)
       101        101        101         101         101
                                                     
      -1         0          1           2           3

o21 : ChainComplex
i22 : assert (D == C ** QQ and C' == C ** (ZZ/101))

See also

Ways to use this method: