Macaulay2 » Documentation
Packages » SimplicialComplexes :: connectedComponents(SimplicialComplex)
next | previous | forward | backward | up | index | toc

connectedComponents(SimplicialComplex) -- find the connected components of an abstract simplicial complex

Synopsis

Description

Two vertices $v$ and $w$ in $\Delta$ are connected if there is a sequence of facets $F_0, F_1, \ldots, F_k \in \Delta$ such that $v \in F_0$, $w \in F_k$ and $F_i \cap F_{i+1} \neq \varnothing$ for all $1 \leq i \leq k-1$. A connected component of $\Delta$ is a maximal subcomplex of $\Delta$ in which all pairs of vertices are connected.

Our first example is an abstract simplicial complex with two connected components.

i1 : S = QQ[x_0..x_6];
i2 : Δ = simplicialComplex {x_0*x_1, x_1*x_2, x_3*x_4, x_4*x_5, x_5*x_6}

o2 = simplicialComplex | x_5x_6 x_4x_5 x_3x_4 x_1x_2 x_0x_1 |

o2 : SimplicialComplex
i3 : C = connectedComponents Δ

o3 = {simplicialComplex | x_1x_2 x_0x_1 |, simplicialComplex | x_5x_6 x_4x_5
     ------------------------------------------------------------------------
     x_3x_4 |}

o3 : List
i4 : assert all(C, Γ -> connectedComponents Γ === {Γ})

The void and irrelevant complexes each have one connected component.

i5 : void = simplicialComplex monomialIdeal(1_S)

o5 = simplicialComplex 0

o5 : SimplicialComplex
i6 : connectedComponents void

o6 = {simplicialComplex 0}

o6 : List
i7 : assert({void} === connectedComponents void)
i8 : irrelevant = simplicialComplex {1_S}

o8 = simplicialComplex | 1 |

o8 : SimplicialComplex
i9 : connectedComponents irrelevant

o9 = {simplicialComplex | 1 |}

o9 : List
i10 : assert({irrelevant} === connectedComponents irrelevant)

See also

Ways to use this method: