Macaulay2 » Documentation
Packages » Complexes :: ComplexMap == ComplexMap
next | previous | forward | backward | up | index | toc

ComplexMap == ComplexMap -- whether two complex maps are equal

Synopsis

Description

Two complex maps are equal if they have the same source, the same target, and $f_i = g_i$ for all $i$.

i1 : S = ZZ/101[a..c]

o1 = S

o1 : PolynomialRing
i2 : C = freeResolution coker vars S

      1      3      3      1
o2 = S  <-- S  <-- S  <-- S
                           
     0      1      2      3

o2 : Complex
i3 : f = id_C

          1             1
o3 = 0 : S  <--------- S  : 0
               | 1 |

          3                     3
     1 : S  <----------------- S  : 1
               {1} | 1 0 0 |
               {1} | 0 1 0 |
               {1} | 0 0 1 |

          3                     3
     2 : S  <----------------- S  : 2
               {2} | 1 0 0 |
               {2} | 0 1 0 |
               {2} | 0 0 1 |

          1                 1
     3 : S  <------------- S  : 3
               {3} | 1 |

o3 : ComplexMap
i4 : assert(f == 1)
i5 : f === id_C[-1][1]

o5 = false
i6 : f == id_C[-1][1]

o6 = true

A complex map is equal to zero if all the maps are zero. This could require computation to determine if something that is superficially not zero is in fact zero.

i7 : assert(0 * id_C == 0)
i8 : g = randomComplexMap(C, C)

          1              1
o8 = 0 : S  <---------- S  : 0
               | 24 |

          3                           3
     1 : S  <----------------------- S  : 1
               {1} | -36 19  -29 |
               {1} | -30 19  -8  |
               {1} | -29 -10 -22 |

          3                           3
     2 : S  <----------------------- S  : 2
               {2} | -29 -16 34  |
               {2} | -24 39  19  |
               {2} | -38 21  -47 |

          1                   1
     3 : S  <--------------- S  : 3
               {3} | -39 |

o8 : ComplexMap
i9 : h = canonicalMap(coker g, target g)

                                 1
o9 = 0 : cokernel | 24 | <----- S  : 0
                            0

                                              3
     1 : cokernel {1} | -36 19  -29 | <----- S  : 1
                  {1} | -30 19  -8  |    0
                  {1} | -29 -10 -22 |

                                              3
     2 : cokernel {2} | -29 -16 34  | <----- S  : 2
                  {2} | -24 39  19  |    0
                  {2} | -38 21  -47 |

                                      1
     3 : cokernel {3} | -39 | <----- S  : 3
                                 0

o9 : ComplexMap
i10 : assert(h == 0)

Testing whether a map is equal to 1 is a shorthand for determining if the complex map is the identity. Although the matrices may appear to be the identity, the map is not the identity when the source and target are not equal.

i11 : g = randomComplexMap(C, C, InternalDegree=>1, Cycle=>true)

           1                       1
o11 = 0 : S  <------------------- S  : 0
                | -33a-3b+13c |

           3                                                 3
      1 : S  <--------------------------------------------- S  : 1
                {1} | -33a+25b-41c -37b+34c -45b+33c    |
                {1} | -28a+16c     4a-3b+4c 45a-37c     |
                {1} | -47a-16b     -34a+9b  35a+34b+13c |

           3                                                  3
      2 : S  <---------------------------------------------- S  : 2
                {2} | 4a+25b-43c 45a+38c     45b-22c     |
                {2} | -34a+2b    35a-13b-41c -48b+34c    |
                {2} | -47a+16b   47a+16c     -18a+34b+4c |

           1                            1
      3 : S  <------------------------ S  : 3
                {3} | -18a-13b-43c |

o11 : ComplexMap
i12 : h = canonicalMap(coker g, target g)

                                               1
o12 = 0 : cokernel | -33a-3b+13c | <--------- S  : 0
                                      | 1 |

                                                                                 3
      1 : cokernel {1} | -33a+25b-41c -37b+34c -45b+33c    | <----------------- S  : 1
                   {1} | -28a+16c     4a-3b+4c 45a-37c     |    {1} | 1 0 0 |
                   {1} | -47a-16b     -34a+9b  35a+34b+13c |    {1} | 0 1 0 |
                                                                {1} | 0 0 1 |

                                                                                  3
      2 : cokernel {2} | 4a+25b-43c 45a+38c     45b-22c     | <----------------- S  : 2
                   {2} | -34a+2b    35a-13b-41c -48b+34c    |    {2} | 1 0 0 |
                   {2} | -47a+16b   47a+16c     -18a+34b+4c |    {2} | 0 1 0 |
                                                                 {2} | 0 0 1 |

                                                        1
      3 : cokernel {3} | -18a-13b-43c | <------------- S  : 3
                                           {3} | 1 |

o12 : ComplexMap
i13 : assert(h != 1)

Testing for equality is not the same testing for isomorphism. In particular, different presentations of a complex need not be equal.

i14 : D = prune image g

       1      3      3      1
o14 = S  <-- S  <-- S  <-- S
                            
      0      1      2      3

o14 : Complex
i15 : p = D.cache.pruningMap

                                                1
o15 = 0 : image | -33a-3b+13c | <------------- S  : 0
                                   {1} | 1 |

                                                                              3
      1 : image {1} | -33a+25b-41c -37b+34c -45b+33c    | <----------------- S  : 1
                {1} | -28a+16c     4a-3b+4c 45a-37c     |    {2} | 1 0 0 |
                {1} | -47a-16b     -34a+9b  35a+34b+13c |    {2} | 0 1 0 |
                                                             {2} | 0 0 1 |

                                                                               3
      2 : image {2} | 4a+25b-43c 45a+38c     45b-22c     | <----------------- S  : 2
                {2} | -34a+2b    35a-13b-41c -48b+34c    |    {3} | 1 0 0 |
                {2} | -47a+16b   47a+16c     -18a+34b+4c |    {3} | 0 1 0 |
                                                              {3} | 0 0 1 |

                                                     1
      3 : image {3} | -18a-13b-43c | <------------- S  : 3
                                        {4} | 1 |

o15 : ComplexMap
i16 : p == 1

o16 = false
i17 : assert(coker p == 0 and ker p == 0)
i18 : assert(prune p == 1)

See also

Ways to use this method: