Macaulay2 » Documentation
Packages » Macaulay2Doc :: Ext^ZZ(Module,Module)
next | previous | forward | backward | up | index | toc

Ext^ZZ(Module,Module) -- Ext module

Synopsis

Description

If M or N is an ideal or ring, it is regarded as a module in the evident way.
i1 : R = ZZ/32003[a..d];
i2 : I = monomialCurveIdeal(R,{1,3,4})

                        3      2     2    2    3    2
o2 = ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c)

o2 : Ideal of R
i3 : M = R^1/I

o3 = cokernel | bc-ad c3-bd2 ac2-b2d b3-a2c |

                            1
o3 : R-module, quotient of R
i4 : Ext^1(M,R)

o4 = subquotient ({-2} | bc-ad   |, {-2} | bc-ad   |)
                  {-3} | b3-a2c  |  {-3} | b3-a2c  |
                  {-3} | ac2-b2d |  {-3} | ac2-b2d |
                  {-3} | c3-bd2  |  {-3} | c3-bd2  |

                               4
o4 : R-module, subquotient of R
i5 : Ext^2(M,R)

o5 = subquotient ({-4} | c b 0  a  0 0 |, {-4} | -b2 c a  0 |)
                  {-4} | d 0 b  0  a 0 |  {-4} | -ac d b  0 |
                  {-4} | 0 d -c 0  0 a |  {-4} | -bd 0 -c a |
                  {-4} | 0 0 0  -d c b |  {-4} | -c2 0 -d b |

                               4
o5 : R-module, subquotient of R
i6 : Ext^3(M,R)

o6 = cokernel {-5} | d -c -b a |

                            1
o6 : R-module, quotient of R
i7 : Ext^1(I,R)

o7 = subquotient ({-4} | c a  0 b 0  0 |, {-4} | b2 0  -a -c |)
                  {-4} | d 0  a 0 b  0 |  {-4} | ac 0  -b -d |
                  {-4} | 0 -d c 0 0  b |  {-4} | c2 -b d  0  |
                  {-4} | 0 0  0 d -c a |  {-4} | bd -a c  0  |

                               4
o7 : R-module, subquotient of R
As an efficiency consideration, it is generally much more efficient to compute Ext^i(R^1/I,N) rather than Ext^(i-1)(I,N). The latter first computes a presentation of the ideal I, and then a free resolution of that. For many examples, the difference in time and space required can be very large.

See also

Ways to use this method: