Macaulay2 » Documentation
Packages » NormalToricVarieties :: NormalToricVariety ^ Array
next | previous | forward | backward | up | index | toc

NormalToricVariety ^ Array -- make a canonical projection map

Synopsis

Description

A product of varieties is equipped with canonical projection maps onto it factors. Given a product of normal toric varieties and a nonempty array, this methods provides a concise way to make these toric maps.

The product of two normal toric varieties has projections onto each factor.

i1 : Y0 = toricProjectiveSpace 1;
i2 : Y1 = hirzebruchSurface 3;
i3 : X = Y0 ** Y1;
i4 : X^[0]

o4 = | 1 0 0 |

o4 : ToricMap Y0 <--- X
i5 : assert isWellDefined X^[0]
i6 : assert (source X^[0] === X)
i7 : assert (target X^[0] === Y0)
i8 : X^[1]

o8 = | 0 1 0 |
     | 0 0 1 |

o8 : ToricMap Y1 <--- X
i9 : assert isWellDefined X^[1]
i10 : assert (source X^[1] === X)
i11 : assert (target X^[1] === Y1)

If A indexes all the factors, then we simply obtain the identity map on X.

i12 : X^[0,1]

o12 = | 1 0 0 |
      | 0 1 0 |
      | 0 0 1 |

o12 : ToricMap X <--- X
i13 : assert (X^[0,1] == id_X)

When there are more than two factors, we also obtain projections onto any subset of the factors.

i14 : Z = Y0 ^** 3;
i15 : Z^[0]

o15 = | 1 0 0 |

o15 : ToricMap Y0 <--- Z
i16 : Z^[1]

o16 = | 0 1 0 |

o16 : ToricMap Y0 <--- Z
i17 : Z^[2]

o17 = | 0 0 1 |

o17 : ToricMap Y0 <--- Z
i18 : assert all (3, i -> isWellDefined Z^[i] and source Z^[i] === Z and target Z^[i] === Y0)
i19 : Z^[0,1]

o19 = | 1 0 0 |
      | 0 1 0 |

o19 : ToricMap normalToricVariety ({{-1, 0}, {1, 0}, {0, -1}, {0, 1}}, {{0, 2}, {0, 3}, {1, 2}, {1, 3}}) <--- Z
i20 : Z^[0,2]

o20 = | 1 0 0 |
      | 0 0 1 |

o20 : ToricMap normalToricVariety ({{-1, 0}, {1, 0}, {0, -1}, {0, 1}}, {{0, 2}, {0, 3}, {1, 2}, {1, 3}}) <--- Z
i21 : Z^[1,2]

o21 = | 0 1 0 |
      | 0 0 1 |

o21 : ToricMap normalToricVariety ({{-1, 0}, {1, 0}, {0, -1}, {0, 1}}, {{0, 2}, {0, 3}, {1, 2}, {1, 3}}) <--- Z
i22 : assert (isWellDefined Z^[1,2] and target Z^[1,2] === Y0 ** Y0)
i23 : Z^[0,1,2]

o23 = | 1 0 0 |
      | 0 1 0 |
      | 0 0 1 |

o23 : ToricMap Z <--- Z
i24 : assert (Z^[0,1,2] == id_Z)

When the normal toric variety is not constructed as a product, this method only reproduces the identity map.

i25 : components Y1

o25 = {Y1}

o25 : List
i26 : Y1^[0]

o26 = | 1 0 |
      | 0 1 |

o26 : ToricMap Y1 <--- Y1
i27 : assert (Y1^[0] == id_Y1)

When the normal toric variety X is a blow-up and the array A is empty, one obtains the canonical projection.

i28 : A = affineSpace 2;
i29 : B = toricBlowup({0,1}, A);
i30 : B^[]

o30 = | 1 0 |
      | 0 1 |

o30 : ToricMap A <--- B
i31 : assert (isWellDefined B^[] and source B^[] === B and target B^[] === A)

See also

Ways to use this method: