Macaulay2 » Documentation
Packages » NormalToricVarieties :: fromPicToCl(NormalToricVariety)
next | previous | forward | backward | up | index | toc

fromPicToCl(NormalToricVariety) -- get the map from Picard group to class group

Synopsis

Description

The Picard group of a normal toric variety is a subgroup of the class group. This function returns a matrix representing this map with respect to the chosen bases.

On a smooth normal toric variety, the Picard group is isomorphic to the class group, so the inclusion map is the identity.

i1 : PP3 = toricProjectiveSpace 3;
i2 : assert (isSmooth PP3 and isProjective PP3)
i3 : fromPicToCl PP3

o3 = | 1 |

              1       1
o3 : Matrix ZZ  <-- ZZ
i4 : assert (fromPicToCl PP3 === id_(classGroup PP3))
i5 : X = smoothFanoToricVariety (4,90);
i6 : assert (isSmooth X and isProjective X and isFano X)
i7 : fromPicToCl X

o7 = | 1 0 0 0 0 |
     | 0 1 0 0 0 |
     | 0 0 1 0 0 |
     | 0 0 0 1 0 |
     | 0 0 0 0 1 |

              5       5
o7 : Matrix ZZ  <-- ZZ
i8 : assert (fromPicToCl X === id_(classGroup X))
i9 : U = normalToricVariety ({{4,-1},{0,1}},{{0},{1}});
i10 : assert (isSmooth U and not isComplete U and # max U =!= 1)
i11 : fromPicToCl U

o11 = | 1 |

o11 : Matrix
i12 : assert (fromPicToCl U === id_(classGroup U))

For weighted projective space, the inclusion corresponds to $l \ZZ$ in $\ZZ$ where $l = lcm(q_0, q_1, \dots, q_d {})$.

i13 : P123 = weightedProjectiveSpace {1,2,3};
i14 : assert (isSimplicial P123 and isProjective P123)
i15 : fromPicToCl P123

o15 = | 6 |

               1       1
o15 : Matrix ZZ  <-- ZZ
i16 : assert (fromPicToCl P123 === lcm (1,2,3) * id_(classGroup P123))
i17 : P12234 = weightedProjectiveSpace {1,2,2,3,4};
i18 : assert (isSimplicial P12234 and isProjective P12234)
i19 : fromPicToCl P12234

o19 = | 12 |

               1       1
o19 : Matrix ZZ  <-- ZZ
i20 : assert (fromPicToCl P12234 === lcm (1,2,2,3,4) * id_(classGroup P12234))

The following examples illustrate some other possibilities.

i21 : Q = normalToricVariety ({{1,0,0},{0,1,0},{0,0,1},{1,1,-1}},{{0,1,2,3}});
i22 : assert (not isSimplicial Q and not isComplete Q and # max Q === 1)
i23 : fromPicToCl Q

o23 = 0

               1
o23 : Matrix ZZ  <-- 0
i24 : assert (fromPicToCl Q == 0)
i25 : Y = normalToricVariety (id_(ZZ^3) | -id_(ZZ^3));
i26 : assert (not isSimplicial Y and isProjective Y)
i27 : fromPicToCl Y

o27 = | 0 |
      | 0 |
      | 0 |
      | 2 |
      | 2 |
      | 2 |
      | 2 |

o27 : Matrix

This map is computed and cached when the Picard group is first constructed.

See also

Ways to use this method: