Macaulay2 » Documentation
Packages » NormalToricVarieties :: picardGroup(NormalToricVariety)
next | previous | forward | backward | up | index | toc

picardGroup(NormalToricVariety) -- make the Picard group

Synopsis

Description

The Picard group of a variety is the group of Cartier divisors divided by the subgroup of principal divisors. For a normal toric variety, the Picard group has a presentation defined by the map from the group of torus-characters to the group of torus-invariant Cartier divisors. For more information, see Theorem 4.2.1 in Cox-Little-Schenck's Toric Varieties.

When the normal toric variety is smooth, the Picard group is isomorphic to the class group.

i1 : PP3 = toricProjectiveSpace 3;
i2 : assert (isSmooth PP3 and isProjective PP3)
i3 : picardGroup PP3

       1
o3 = ZZ

o3 : ZZ-module, free
i4 : assert (picardGroup PP3 === classGroup PP3 and isFreeModule picardGroup PP3)
i5 : X = smoothFanoToricVariety (4,90);
i6 : assert (isSmooth X and isProjective X and isFano X)
i7 : picardGroup X

       5
o7 = ZZ

o7 : ZZ-module, free
i8 : assert (fromCDivToPic X === fromWDivToCl X and isFreeModule picardGroup X)
i9 : U = normalToricVariety ({{4,-1},{0,1}},{{0},{1}});
i10 : assert (isSmooth U and not isComplete U and # max U =!= 1)
i11 : picardGroup U

o11 = cokernel | 4 |

                               1
o11 : ZZ-module, quotient of ZZ
i12 : assert (classGroup U	=== picardGroup U and not isFreeModule picardGroup U)

For an affine toric variety, the Picard group is trivial.

i13 : AA3 = affineSpace 3

o13 = AA3

o13 : NormalToricVariety
i14 : assert (isSimplicial AA3 and isSmooth AA3 and # max AA3 === 1)
i15 : picardGroup AA3

o15 = 0

o15 : ZZ-module
i16 : assert (picardGroup AA3 == 0 and isFreeModule picardGroup AA3)
i17 : Q = normalToricVariety ({{1,0,0},{0,1,0},{0,0,1},{1,1,-1}},{{0,1,2,3}});
i18 : assert (not isSimplicial Q and not isComplete Q and # max Q === 1)
i19 : picardGroup Q

o19 = 0

o19 : ZZ-module
i20 : assert (picardGroup Q == 0 and isFreeModule picardGroup Q)

If the fan associated to $X$ contains a cone of dimension $dim(X)$, then the Picard group is free.

i21 : Y = normalToricVariety (id_(ZZ^3) | -id_(ZZ^3));
i22 : assert (not isSimplicial Y and isProjective Y)
i23 : picardGroup Y

        1
o23 = ZZ

o23 : ZZ-module, free
i24 : assert (rank picardGroup Y === 1 and isFreeModule picardGroup Y)

To avoid duplicate computations, the attribute is cached in the normal toric variety.

See also

Ways to use this method: