Macaulay2 » Documentation
Packages » NormalToricVarieties :: toricDivisor(NormalToricVariety)
next | previous | forward | backward | up | index | toc

toricDivisor(NormalToricVariety) -- make the canonical divisor

Synopsis

Description

On a smooth normal toric variety, the canonical divisor equals minus the sum of all the torus-invariant irreducible divisors. For a singular toric variety, this divisor may not be Cartier or even $\QQ$-Cartier. Nevertheless, the associated coherent sheaf, whose local sections are rational functions with at least simple zeros along the irreducible divisors, is the dualizing sheaf.

The first example illustrates the canonical divisor on projective space.

i1 : PP3 = toricProjectiveSpace 3;
i2 : assert(isSmooth PP3 and isProjective PP3)
i3 : K = toricDivisor PP3

o3 = - PP3  - PP3  - PP3  - PP3
          0      1      2      3

o3 : ToricDivisor on PP3
i4 : assert(all(entries K, i -> i === -1) and isWellDefined K)
i5 : omega = OO K

          1
o5 = OO    (-4)
       PP3

o5 : coherent sheaf on PP3, free of rank 1
i6 : assert(HH^3(PP3, OO_PP3(-7) ** omega) === HH^0(PP3, OO_PP3(7)))

The second example illustrates that duality also holds on complete singular nonprojective toric varieties.

i7 : X = normalToricVariety({{1,0,0},{0,1,0},{0,0,1},{0,-1,-1},{-1,0,-1},{-2,-1,0}},{{0,1,2},{0,1,3},{1,3,4},{1,2,4},{2,4,5},{0,2,5},{0,3,5},{3,4,5}});
i8 : assert(isComplete X and not isProjective X and not isSmooth X)
i9 : KX = toricDivisor X

o9 = - X  - X  - X  - X  - X  - X
        0    1    2    3    4    5

o9 : ToricDivisor on X
i10 : assert(all(entries KX, i -> i === -1) and isWellDefined KX)
i11 : isCartier KX

o11 = false
i12 : omegaX = OO KX

         1
o12 = OO   (-3, -3, -4)
        X

o12 : coherent sheaf on X, free of rank 1
i13 : assert( HH^0(X, OO_X(1,2,5)) === HH^3(X, OO_X(-1,-2,-5) ** omegaX) )

See also

Ways to use this method: