Macaulay2 » Documentation
Packages » NormalToricVarieties :: toricDivisor(Polyhedron)
next | previous | forward | backward | up | index | toc

toricDivisor(Polyhedron) -- make the toric divisor associated to a polyhedron

Synopsis

Description

A convex lattice polytope corresponds to a pair: the normal toric variety determined by its normal fan and toric divisor. The coefficient of the $i$-th irreducible torus-invariant divisor is determined by the supporting hyperplane to the polytope whose normal vector is the minimal lattice point on the $i$-th ray.

Our example demonstrates how different triangles correspond to toric divisors on the projective plane.

i1 : P1 = convexHull matrix{{0,1,0},{0,0,1}};
i2 : D1 = toricDivisor P1

o2 = D
      2

o2 : ToricDivisor on normalToricVariety ({{1, 0}, {0, 1}, {-1, -1}}, {{0, 1}, {0, 2}, {1, 2}})
i3 : X = variety D1;
i4 : D1

o4 = X
      2

o4 : ToricDivisor on X
i5 : P2 = convexHull matrix{{-1,0,-1},{0,0,1}};
i6 : D2 = toricDivisor P2

o6 = D
      0

o6 : ToricDivisor on normalToricVariety ({{1, 0}, {0, 1}, {-1, -1}}, {{0, 1}, {0, 2}, {1, 2}})
i7 : P3 = convexHull matrix{{0,1,0},{-1,-1,0}};
i8 : D3 = toricDivisor P3

o8 = D
      1

o8 : ToricDivisor on normalToricVariety ({{1, 0}, {0, 1}, {-1, -1}}, {{0, 1}, {0, 2}, {1, 2}})
i9 : P4 = convexHull matrix{{-1,2,-1},{-1,-1,2}};
i10 : D4 = toricDivisor(P4, CoefficientRing => ZZ/2)

o10 = D  + D  + D
       0    1    2

o10 : ToricDivisor on normalToricVariety ({{1, 0}, {0, 1}, {-1, -1}}, {{0, 1}, {0, 2}, {1, 2}})
i11 : ring variety D4

      ZZ
o11 = --[x ..x ]
       2  0   2

o11 : PolynomialRing

This method function creates both the toric divisor and the underlying normal toric variety.

See also

Ways to use this method: